Informazioni su questo libro

Si tratta della copia digitale di un libro che per generazioni è stato conservata negli scaffali di una biblioteca prima di essere digitalizzato da Google nell'ambito del progetto volto a rendere disponibili online i libri di tutto il mondo.

Ha sopravvissuto abbastanza per non essere più protetto dai diritti di copyright e diventare di pubblico dominio. Un libro di pubblico dominio è un libro che non è mai stato protetto dal copyright o i cui termini legali di copyright sono scaduti. La classificazione di un libro come di pubblico dominio può variare da paese a paese. I libri di pubblico dominio sono l'anello di congiunzione con il passato, rappresentano un patrimonio storico, culturale e di conoscenza spesso difficile da scoprire.

Commenti, note e altre annotazioni a margine presenti nel volume originale compariranno in questo file, come testimonianza del lungo viaggio percorso dal libro, dall'editore originale alla biblioteca, per giungere fino a te.

Linee guide per l'utilizzo

Google è orgoglioso di essere il partner delle biblioteche per digitalizzare i materiali di pubblico dominio e renderli universalmente disponibili. I libri di pubblico dominio appartengono al pubblico e noi ne siamo solamente i custodi. Tuttavia questo lavoro è oneroso, pertanto, per poter continuare ad offrire questo servizio abbiamo preso alcune iniziative per impedire l'utilizzo illecito da parte di soggetti commerciali, compresa l'imposizione di restrizioni sull'invio di query automatizzate.
Inoltre ti chiediamo di:

+ Non fare un uso commerciale di questi file Abbiamo concepito Google Ricerca Libri per l'uso da parte dei singoli utenti privati e ti chiediamo di utilizzare questi file per uso personale e non a fini commerciali.
+ Non inviare query automatizzate Non inviare a Google query automatizzate di alcun tipo. Se stai effettuando delle ricerche nel campo della traduzione automatica, del riconoscimento ottico dei caratteri (OCR) o in altri campi dove necessiti di utilizzare grandi quantità di testo, ti invitiamo a contattarci. Incoraggiamo l'uso dei materiali di pubblico dominio per questi scopi e potremmo esserti di aiuto.
+Conserva la filigrana La "filigrana" (watermark) di Google che compare in ciascun file è essenziale per informare gli utenti su questo progetto e aiutarli a trovare materiali aggiuntivi tramite Google Ricerca Libri. Non rimuoverla.
+ Fanne un uso legale Indipendentemente dall'utilizzo che ne farai, ricordati che è tua responsabilità accertati di farne un uso legale. Non dare per scontato che, poiché un libro è di pubblico dominio per gli utenti degli Stati Uniti, sia di pubblico dominio anche per gli utenti di altri paesi. I criteri che stabiliscono se un libro è protetto da copyright variano da Paese a Paese e non possiamo offrire indicazioni se un determinato uso del libro è consentito. Non dare per scontato che poiché un libro compare in Google Ricerca Libri ciò significhi che può essere utilizzato in qualsiasi modo e in qualsiasi Paese del mondo. Le sanzioni per le violazioni del copyright possono essere molto severe.

Informazioni su Google Ricerca Libri

La missione di Google è organizzare le informazioni a livello mondiale e renderle universalmente accessibili e fruibili. Google Ricerca Libri aiuta i lettori a scoprire i libri di tutto il mondo e consente ad autori ed editori di raggiungere un pubblico più ampio. Puoi effettuare una ricerca sul Web nell'intero testo di questo libro dahttp://books.google.com

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

$$
. D 62
$$

```
    Treatise
    O F
PERSPECTIVE
DEMONSTRATIVE
                                    A N D
PRACTICAL.
```


Illuftrated with Copper Cuxts.

By Humphry Ditton, Mafter of the New Matbematical School, in Cbrist's $\mathrm{H}_{0} / \mathrm{pital}$.

$$
L O N D O N:
$$

Printed for B. Toоке, at the Middle-TempleGate, Fleetfreet; and D. Midwinter, at the Three Crowns in St. Paul's ChurchYard. M DCCXII.

To the Honourable

Francis Nicholfon, Efq;
General of Her Majesty's FORCES

IN

North America;

True Patriot, a Gentleman, and a Friend,
To whom his COUNTRY is indebted for many fignal Services Abroad, as LEARNING is, for a Generous En. couragement at Home;

THIS

Treatife of Perspective (Defign'd for the Ufe of the NEW MA-THEMATICAL-SCHOOL in Cbrijfs-Hofpital) is humbly Dedicated,

In Teftimony of

That profound RESPECT Which is (and ever will be) paid to him

BY THE
 A U THOR.

Thisterec.
[i]:
PREFACE READER. Prefatory. Difcourfe; I shall endeavour to make the following one as USeful as I can', by difcourfing of . Something by which I may inform the Reader, at the fameitine that I pay him the usual Couplemont.

And therefore as the Defign of the Enfuing Treatiff, is to explain the Nature and Properties, of one particular Sort or Kind of PROJECTFN; fo I propofe here to explain, the Nature of PROJECTION IN GENERAL, with its feveral Kinds, and their Uses and Differences one from another; and this' as far as the Bounds that are here, fer me will permit.

PRQYEATION, $\overline{6}$ tbe:Transcription or Delineation, of an Object: upon a Plane.: Ot rather; 'Tic the Figure, mark'd or trac'd out upon a Plane e_{2} by a moveable Line, extended from the E TE, as a common Pole or Centre, to the Several Points of an Object. Upon this Account, 'ti called by feme, by the Name of SEC. TION, and that riot improperly ; for that Figure, b

Image, or Reprefentation of an Object upon a Plane, which we call PROFECTЮN; is no other than the SECTION of the Vifual Cone, Pramtt, eytind $d e r$. or Prijm, by the Plane on which the faid Figure is defignid. His eafil undefitaod frome hence, hown greis a Variety of Prepetion arifes, from the various Pofitions, both of the Eye, the vifible Object, and the Plane it folfa. That as' it mult needs be vaftly different, if the Eye and Plame continuing their Sityation,' the Ohe efit chandes from a dinef Pofition to an obligue; lo likewife it nutt be, if the Eye and Object remaining as they were, the Plane be froved from one Situatern to another. And that of the Plane, be between the ObjeतZ and sbe Eye; the Projected Figure will be lefs, the nearer the Plane is to the Eye, and the grearter, the furcher off; fuppoing the Eye and Objeot to be fix ${ }^{2}$ d, and the Phane to move: As alfo that the projected Figure will be greater, the further He Eye is from the Planes and lefs, the nearer it is to it; fuppofing the Objeit and Plame to be fix'd, and the life to move backwards or forwards. On the other tiand; that if the Objett, be between the Pluns aind the Eje: Then the further the Object is from the Plarie, the bigger its Projection iss and the nearer, ithe lefs; Cuppofing the Plane and the Eye wo retain their Pofitions, and the Objeat to move; or that the further the Eye is from the Plane, the tefs. the Proje etion of the Object is, and the nearen, the bigger; fuppofing the Objeft and Plane to retain their Pofir tions, and the Eje to move.

Thefe things are obvious, upon the drawing of three or four ftrait Lines, And therefore paffing this, I think it not improper to oblerve in the next Place, that we ought to conceive a Differenoe, be-

[iii]

oween the PROJECTION, and the bare APPEAR: ANCE, of an Object to the Eye. For the Situation of the Objecti; and of the Eye, continuing, the APPEARANCE is fill the fame: But tho' the Eye and Objea fhould retain their Pofrions, yet if the Plame alters its Situation, the PROJECTION will nor be the fame; but very different. So that thefe Two are not entirely the fame; nor are the Words therefore to be used promifcuoufly, as Terms perfectly equivalent, and that fignific one and the fame thing. APPEARANCE depends only upon the Relation of two things to each other, oizt the Objeat; and Eyre But PROJECTION befides thofe Two, takes in the Confideration of a Plane, which befides a valt'Varisity in is relf, introduces a confidesable Differinoe between it-and the other, Yet after all ; Projettion is na more than Relativo Appearanace; thit is, fuch as refules, from this of that particular Situation; of Eyce Objeat; and Plame, altogether. And ?'is this particular Confideration of a Plange likewife; that diftinguilhes this Science, from what we commonly call, SIMPLE or DIRECT OPTICKS. For as there, we confider Quantities purely as VISIBLEx, or as the Objects of Vifion; Co bares, they are confider'd, as Vifible, with Refpect ta :cat cirrain Plane, tying in this or that yarticular P.afition.

The diffarent Kinds or Species of Projection, muft be taken, from the various placing, either of the Objots, the Plawe, ot the Eje:

That they oughe not to be deriv'd from the, Po Gtions of the object ; is plain. Becaufe, tho' very different Projections will arife from hence, yet they would be Infifnite; even-2s many, as there are Po: frions, that the Object shay be plac'd ini,

[iv]

Befides; from a different POSITION, arifes $\overline{\mathfrak{j}}$ different APPEARANCE to the Eyes And fince. Projection, is only tranfribing the Objett as it appears; we fhould thus, rather be projecting fo many feotral different Objects, than making the feveral different Projections of one and the fame Object.

Neither ought this Diftindion, to be taken from the various Poftions of tbe Planc, which in general can be but Three, viz, Perpondicutar, Perallel, or Oblique, to a Ray, let fall perpendicularly, from the Eye, to the Object.
'Tistrue, that there arife from hence, three very different Projections; and a Man may, if he plear Fes, call them different Kinds of Projections too: But however, it would be of firtle Uffe or Advantage to diftinguifh them thus $;$ nay it would be (without farther Limitationt and Conditions) an obfcure, doubfful and' ambiguous. Way of giving an Accoumt of a' Projection, to fay, It was fiub a one, that the primary viffal Ray, was at Right Angles, or not at Right Angless to the Plance, on which ebc Pro. jection was made.

A Man by this, might poffibly, in many Cafes; underttaind one Sort of Figure, when in Reality, it was quite another that was intended.

Certainly the Difitinttion of the Kimds of Projoc Ction, ought to be taken from that Principle, and that only, which will infer the moft compleat, comprehenfive, and eafily conceivable Difforence, betweeri the Members fo diftinguilh'd ; and that Principle muift of neeeflity be, the various Diftrance of tbe Eys.
This takes in' and accounts for all $;$ and intro: duces a clear and diftinct Notion, of Three Kinds of Projection, vaftly different from one another. Nor,

[y]

NNor can chere, upon this. Principlespoffitly be ang more than Tbree ; fince there can be but a threefold Variety in that Article of Diftance. For the Eye may be fuppos'd, either to be Infinitely remo'd, or Infinitely near, (or in Contaf, as they exprels it) or elle at fome juff and moderate Difance.

Accordingly we bave. (what the Writers of this Science, have call'd by the Name, of the) :ORTHOGRAPHICAL, STEREOGRAPHICAL, and SCENOGRAPHICAL, Projections: Of each of which, we-fhall feak fomething in their Order.

In the Ortbograpbick Projection, we commonly fay, the Eey is fluppos'd to be at an Infinite Diftance; which is not to be undertood frittly, but comparatively fo; or in a more rude and vulgar way of Specch, for an Immoderate or very great Diftance, and which wish Refpect to our Ordinary Views (which are taken at fmall Diffances) may well enough be call'd Infinite. We may fairly reckon that to be an Imr moderate (and in this Senfe therefore an Infinite) Ditrance, when the Parts of an Object, which in rear lity, bear a very confiderable Proportion to the mbole ; do notwihthtanding difíppear and lie hid, fo that we can't difern Exceffes and Defeeds, or make Comparifons between them; as we could eafily do, at fome other Stations lefs diftapt from that Object.
And therefore, this Infinite Diftawce we fpeak of, is I_{q} far from confiling in Indivijfifili, or being ons only Imperife Dtfance; that it admits of a great Latitude; nay is capable of Infoiste Varriets, according to the Megnizude and Extent of the Objects view'd or confider'd. That fame Ditances, which with Refiect to a pery fmall مibject, may be Immode rete and Exceffive; with Refect to a Great onc; may

Diftance, in Comparifon to a minute Object, may be immoderate; when a vaftly great one may be the Contrary, with Refpect to an Object of proportionally large Dimenfions. The Monn's Diftance from the Eartb is properly enough ftild Infinite, in Comparifon to fome petty Meafures of Length and Diftance, in common Ufe here amongft us. But yet it is not fo, with Refpect to the Semidiameter, of the Terreftrial Globe. For we find (for Example) that the Appearances of Solar Eclipfes are very different, at the very fame Moment of Aboflute Time; to People that obferve them, from different Parts of the Globe : Which fhews, that the Semidiameter ofour Earth is far enoughfrom being as a Point, with Refpect to the Diftance of the Eclipfing Luminary, and does indeed bear fome conliderable Proportion thereto; and this Proportion is commonly expref'd in round Numbers, by that of 1 to 60 . However this fame Semidiameter of the Terreftial Globe, bears no fenfible Proportion, to the Sun's Diftance from it; which therefore is in our Senfe, an Infinite Diftance. Hence we take the Sun's Rayes as Parallel, and determine the Foci of them in Refrating or Refleling Glaffes, as for Rayes that are really Parallel; and that without confiderable Errour. We fuppofe the Sun to enlighten Half the Globe of our Earth; when as in Geometrical. Strictnefs, 'tis certain that he enlightens more than 2 Hemifphere. But then, as one and the fame Laminary, enlightning one and the, fame spherisk Body which is lefs that that Luminary; enlightens a alefs portion of it (tho' always more shani 2 数 emiffotere) at a greater Diftance, than it does intid Ref Bitaince; fo upon the Account of mn Thmadederarify great Diftance, berween the two Bodies ';'the'tidithtiped Part will' approach

[vii]

fo near to a Hemilphere, or rather, the Excefs of the Enlighimed Part above a Hemifphere, will be To far diminih'd ; that no fenfifle Difference will arife.

And this is the Cafe, with Refpect to the Sun, and the Globe we live on; upon which Score (tho it be not Mathematically True) we Ray, that Half the Latter is enlightned by the Former. So alfo, we take the Shadows of Equidiftant Gnomons, to be: Parallel to one anotber; and fay, that 'tis the fame thing, whether Dials are plac'd on 'the Surface, or at the Centre of the Earth; whereas rigoroully rpeaking, neither are, nor can, the Shadows of fuch Gnomons be parallel (unlefs in one Cafe, when the Gnomons themifelves, are difpos'd parallel to the Plade, on which the Shadows are receiv'd) nor ar Dials' exact, plac'd any where but at the Centre; where, and where only; the Stile truly anfwers to the Axis of the Globe, and the Planes themfelves, to the Planes of the Great Circles, which they reprefent.

But to proceed. It is upon the Account of this fuppos'd Infinite Diftance of the Eye; that all OR, THOGRAPHICK Projections are defign'd by Parallel Rayes, Indeed in Nature, there is not, no can be any fuch thing, as Parallel Radiation; either from a REAL, or FICTITIOUS. Radiant, fuch as is an Eye; but the Angles becoming Indefinitely Small, and therefore Infenfible, when the Piftance is Indefinitely Citat ; we therefore take the Projecting Rayes in this Cafe, as ParalleI, and pros ceed accordingly.

From hence it is, that in Projections of the Spifice this way, all Circles both Great and small, the flanes of which, are nior at Right Angles, to the $\stackrel{5}{4}$

Plaqg

: [viii]

Plane of that Circle, on which the Projection is made ; do all fall into the Form of Ellipfes.

All little Circles, as alfo all great ones, which are perpendicular to the faid Plane; (fuch as are the Equator, Ecliptick and Horizon in the Common Analemma) are reprefented by frait Lines. Nor can there be any fort of Line, Circular here; except only the Periphery of that Circle, in a Line drawn thro' the Pole of which, the Eye is fuppos'd to be plac'd, at an Infinite Diftance; Or in other Words; the Circle we project upon: as (for Example) the Solfitial Colure, in the Inffrument juft now mention'd.

From hence likewife it is, that all Arches, being projected, into their Right Șines'; the Line of Sines is of fo neceffary ufe, in defcribing and folving Problems, by this Sort of Projection. There are many μ feful, and Noble Projections of the Sphere, made this way; and particularly very curious, (I won't fay the moft practicable) ConftruCtions of Dials to be drawn from thence. Yet it mult be'confefs'd, that as the nice Defcription of Ellipfes, is a troublefome and laborious Practice"; fo there is an Inconvenience in that Refpect, attending an Ortbograpbical Projection, where a Problem requires an Ellipfis to be defcrib'd ; which fome of the very Fine ones do ; tho' moft of the uffefil Vulgar ones do not, but may be done by Right Lines and Circles only.

Nor Thould we omit taking Notice, of that particular Inconvenience likewife, in Orthographical Projections, viz. Tbe extream narrowing and crowding togetber of the Parts; toward the outfde; which is the unavoydable Confequence of the Parallelifm of the Rayes: As common, Geometry will convince any one, that divides the Circupference of a Circle in-

[ix]

to a good Number of equal Parts, and draws Chords, thro' the oppofite Correfpondent Points.

This Sort of Projection, by Parallel Rayes, is very ufeful in other Cafes, befides that of defigning the Circles of the Spbere upon a Plane, for Aftrono: mical Purpofes.

In Military Arcbitefture; the Draughts of Forti; fications, are made this way, not only with more Eafe and Expedition, but with moft Convenience and Advantage too.

In civil Architecture, Orthograpby properly fignifies the upright. Delineation of the Front : Thus Vitruvius defines it, Ortbographia ef Erecta Frontí Imago, 1ib. 1. And by Front I prefume is commonly, intended, all that can be feen direaty, at one finglé View ; whether inward or outward, whether confilting of one Plane only, or of more. But this is a more reffrain'd Senfe and Application of the Word; for it denotes in general, a Delineation or Defignation by perpendicular Lines; whictr comes up to the true Purport of the Term igooverqiam. And it is after this way; that the Plans and Elevations of Buildings, are ordinarily drawn.

The Ichnography (or Plan) ex. gr. is an Orthographick Projection, on the Ground Plane; or, which is the fame thing; 'is the Section by 2 Plane parallel to the Horizon.

The Profile, is the fame Sort of Frojection upon a Vertical Plane, parallel to that, by which the Body is fuppos'd to be cut through. Sometimes the entire Section it felf (in which not only the bare outLines, but alfo the Thicknefs of the Walls appears) is reprefented this Way.

All thefe Projections are defign'd, by Perpendiculars let fall, from the feveral Points of the Objec,

[x]

to the Plane or Table, on which the Figure is to be drawn. For which Reafon they mult all of them, ner ceflarily be Similar to their refpective Primitive Figures; being made (as they are fuppos'd to be) on Planes parallel to thole, in which the Originals,or Primitive Figures are conceiv'd to lie. Farther, tho ${ }^{\circ}$ Htright and Tbicknefs, may well be reprefented thio Way; yet there can be no Expreffion of $D_{\text {epth }}$ or Profun-: dity. The Nature of the Projection, will not allow any Reprefentation of this Dimenfion. However (as Vitruvius intimates, Lib. I. Ch, 2.) it may be allowable to remedy this, by Sbading or Colouring what is chus defcrib'd Ortbographically upon a Plane ; by which Means the Elevation and Depreffion, and fo the due Ditinction of Parts, may be exhibited; tho' it can never pofffbly be done, by the bare Lineaments; or Geometrick Defign.

But to go on with our Difcourfe.
The STEREOGRAPHICK Projection, comes next to be confider'd. This is that, which is faid to be, Ex Oculi contaitu, becaufe the Eye in this Sgrt of Projection, is conceiv'd to be pofited, on the very Surface of the Body or Figure to be projeced. And there is this particular Advantage arifing from thence, viz That, in the SPHERE, (about which this Projetion is principally converfant) all the Parts are feparately and diftinetly reprefented; and tbat there is no one Point (excepting that only where the Eye is plac'd) whofe Rrojection coincides, with the Projection of another Point. For the Rayes drawn from the Eye to the Points of the Spherick Surface, will cut the Plane on which the Projection is made, each in its own proper diftinct Point, Indeed, in the Cafe ot Bodies, that are contained under Rectilinealfigur'd Surfaces;'sbere the Projections of feveral Rooints

[xi]

will be coineident with one another, and that becaufe of the Rectilineal Surfaces; as if ex. gr. the Eye were plac'd in one of the folid Angles, of either of the Regular Bodies; the Projections, of the feveral Points of thofe Surfaces, whofe Angles compofe the Solid Angle where the Eye is fix'd, will be coincident with one another, becaufe the faid Points lie all in Atrait Lines. But in the Sphere, or other Solid, contain'd under a Curve Surface; it will be otherwife. It is from hence, that this Projection has its Name of STEREOGRAPHICK; becaufe not only the Ambit or Outide of 2 Body is this way defcrib'd, but the $\boldsymbol{\tau}$ stficu μ, the Solidity, or entire Content of it : As the Geometry of Solids, is for the famp Reafon called ssfeoptтeic.

To give the compleat and entire Figure, of a Body thus on a plane Superficies, is the peculiar Property of the Stereograpbick Projertion ; for neither the Orthograpbick nor the Scenographick, canpoffibly do this.

Befides; the Parts of the Projecture, in going ; from the Centre to the Circumference, which in the Ortbographick Projection, are fo crouded together; that they are the leaft fit for Ufe, where many times they ought to be of the moft Ufe; thefe here, are gradually augmented, and that with no very exceffive lacreafe, till we come to a Hemifphere; after which they are indeed, more immoderately augmented.

But then (which is likewife not only a noble Prop perty, but a moft confiderable Eafe and Advantage in this Projection, is, that) all the Circles of the Sphere, both Small and Great (except thofe Grear ones only which pafs thro ${ }^{2}$ the Eyc, and which are defigo'd by Right Lines) are reprefented here by Circles; and that as none of them elfe can be Araia

Lines,

Lines; fo neikher can they be Ellipfes ${ }^{-}$; as they will be (fome of them, both Great and Little ones) in the Ortbograpbick Projection. Farther, all Arches peing projeted here, into their Semitangents; that Line becomes of as ftanding Ufe in rbis, as that of Right Sines is in the Ortbograppick Projection.

The Inverfe of the STEREOGRAPHICK Projection ; is that which is commonly call'd the GNQMONICAL (as being that on which the ordinary Defcription of Dials is founded.)

I call it the Inverfe, of the STEREOGRAPHICK, becaule of the Reciprocal Pofations of the Eye and the Plane, in thefe swo Projections.

For as there, an Eye plac'd fomewhere on the Circumference of the Sphere, projects upon a Plane paffing through the Centre; to bere, an Eye plac'd in the Centre, projects upon a Plane, touching the Surface of the Sphere. Upon this Score 'ris, thagt Arches are here projected not into their Semitangents, as in the other, but into their Tangents.

All Great Circles fall into frait Lines.
All Little ones, parallel to the Plane of the Projection, come into Circles; and the reft, acecording to their various Poficions, into the other Conical Setions.

This Projection, being not fo vulgarly talk'd of, as the reft; I thought it would nos be amifs, to give a little Explication of it here, in a Figure drawn for that Purpofe. (See Fig. 37.)

Conceive the Sphere, whofe Centre is O , and which is touched by an infinite Plane in A, to be cut thro' its Centre, and the faid Point of contatt, by another Infipite Plane; by which Means, the Great Circle which appears here, will be produc'd by the Section of the Sphere ; the Infinite Line DAG for the
the Common Section of the two Infinite Planes; and the other Right Lines drawn in the Figure; will be the common Sections of the Planes of the Circles. of the Sphere, both Great and Small, by the aforeGid cutting Plane.

It's plain that the Great Circles SX, QW, VR, $£ \%$ are projected into Right Lines; as all pafling thro' the Eye at O. If the Little one KI be parallel to DG, then BE, is the projected Diameter of a Circle. But CE, into which PI is projected, is of Neceflity, she longeft Axis of an Ellipfis; and fo of all other. bittle Circles, drawn under the fame Conditions,

For the Triangles COE, POI, can never poffibly. be Similar; che latter:being evet an Ifofcoles. So sthat there can be no fuboontrary Seation here; andtherefore no little Circle, can fall into a Circle, if is does not lie patallet to the Plane DAG, Such a prodigious Difference, does the bare Chifting the Place: of the Eye; in there two Projections make; that whereas in the STEREOGRAPHICK, we have mothing but fubcontrary Sections, in the GNOMO NICK, we have none at all.

The Circle LN will be' an Hyperbola upon the Plane DG, which cuts the Side ON of the Cone LON, produced beyond the Vertex Q. The Circle HM will be 2 Parabota ; for I.fuppofe TOM to bo parallel to DAG.: And to of the reft: A Man may at Liberty determine the P ofitions of his littlo Circles, and fo fee what Sections they will be, when Gnomoxically projected. I could fhew a Method, fomerhing peculiar, for defcribing there Curves ; but that's not my Work here, and befides thofe Practices are common enough; nay; 'tis as common now a-days for People to do them, as 'tis for them, not to undertand one Word of the Dea monftrations:

[xiv]

thonftrations. This fame Figure, will fervē tò fhew the Grounds of another pretry curious Spec . culation in thele Matters; and that is, Whap Conick Seltions are defcribed by she Shaddows of the Stiles of Dials, at any time of the Yoar, in any gioem Place.

For fuppore VR the Axix of the World, QW the Equator, LN fome parallel of Doclination; DAG, the Herizoz of any Place.

The Angle DFV is the Latitude, fuppofe =n De: grees; the prefent Dactinution $W N=p$ Degrecs ; therefore the-Angle NOF or NOR $=90-p$ Degrees. Now if $n=$ or $<$ or $>90-p$; the Shaddow of the Gnomon upora the Plane DF, will at that Time, defcribe 2 Parabola, Hyperbolag or Ellipfin; as is moft obvious from the various cutting of the Cone LON, by the Dial-plane DAGs, If n were $=90$, the Seetion becomes a Circle; and the Place whofe Horizon DG is, is the Pole ir felf, This may be expref'd in particular Examples, for particular Latitudes, and any Dialplanes at Lis berty.

In the laft Place of all, the SCENOGRAPHICK Projection comes to be confider'd. This proceeds (as they lay) Ex Fufto © Moderato Oculi Intervallo; the one of the other two Sorts of Projection being ix Contaliu, and the other ex Infimita Oculi diAtantia.

What this $\mathcal{F u f t}$ and Moderate Diftance is, is not fo cafily determin'd, though many have given theirt Rules for the fixing of it. Indeed fpeaking Univerfally, it is not determinable, in the very Na ture of things: That being a moderate Diftance, with Refpect to one Eye and one Object, which is not fo, with Refpect to another; fo that there

[xiv]

can be no fetting that Point, but with Regard to thafe Conditions.

This Projection is of no Ufe, with Refpect to the Reprefentation of the Circles of the Sphere : ('Tis true, a Circlé may be a Circle here; bus iz mult be by fubcontrary Poficion ; unlefs it tands parallel to the Table:) But 'cis of moot admirable Ufe in defigning all Sorts, of Solids and Surfaces, Buildings, Walks, Rivers, Animals, and in a Word, whatever appears in Nature, within the Limits of a proper Diftance. And this it does the moft to the Life, of any Sort of Projection whatioever. 'Tis this Science, which teaches thofe pretty Frauds in Vifion, which give us to much Pleafure', and make us even fond of being impofed upoti. ${ }^{9}$ Tis from hence that Paintingo Scylptura, and all the fine Arts of Imitatiots, détive theit Force and Beauty:

And 'tis the Explication of this, in its dominetre?: tive Grounds and Principles, as vell as in all the aeceflary Branches of Practice, which la phe Defigh of the following Treatife.

1 know there are many large, and, pompous Bookg, written on this Subject: Is 2 great Part of Whichy, the Authors have beea free criough of theis Excanples, but too faaring of their Demonftations; ynd fome few others have demonftrated much mores than they have leewn the Ufe of ; nor are there thofe wantings who have juifly mix'd both thefe ton sether.

In this little Book, I would hope that the Matbimatical Reader, may gind both as much Demonftrasion, and as much Pratice, as may enabte him to perform any Problem whatfoever, relating to thefe Matters, in which the Strefs of the Solution is to

[xvi]

lie upon Geometrys, and not upon bare Delineation: The Art of Colouring, is quite another thing, and fo is that of neat and curious Drawing; both which may be in great. Perfection without the rigorous Mathematical Part, as the Mathematical Part may be without them. .'Tis this Latter that is, my Bufinefs' here in this Treatife, which if it ferves in any Meafure either to entertain thofe that are knowing this $W_{\text {ay }}^{2}$, or to inform thofe that are not ; I have obtained tyy End.

ER R ATA

PAge 57. Line 26. Read Prop. IX. In the Corollaries of Prop. $\mathbf{X F}$ and XII, 'the Figures referr'd to'; will direct the Reader, when to read \mathbf{N}, and when O : The
 Fig. 12. From P. 65. to Prob.iIV. P: 82. the No. of the Scheme, is unity lefs than it hould be. From P. 82, to yo, the No. is right; and from p. 90^{\prime} to the End of the Book, is defective as before. Pag. 148. 1. 28v dele, Atill the Heigbt of the, Eye. Pag. 149.:1. 7.. dele by. Pagaibid. read 1. 19,20, 21, 22, thus; The Height of the Eye which is fuppofè to be unknown, we woill denate by tbe Line H . - But what is chiefly wonted, is that particular Diffance of tbe nye, \&c. Pag. zbid at the End of 1:2\%. after the Words, of IN to M add, viz. For tbe Eye's Heigbt woill eafily be: foumets, zoben this Diftance is once determin'd: Juft as 'tis at Corol. L. Prop. V. Pag. 162. Line 2. for by that, read that by-

DEFt.

$$
[\mathrm{I}]
$$

©
 DEFINITIONS.

DEFINITION.I.

PERSPECTIVE is an ART which teacherh how to delineate the true Appearances of Objects, upon any Superficies, for any given Diffance and Height of the Eye:

D E F. II.

The Perfpective Table, or Plane, is that, whereon the Picture of the ObjeCt is form'd, according to perfpective Rules.

D E F. HI.

The Geometrical, or ground Plane, is that whereon the Perfpective Table is fuppofed to ftand.

D E F. IV.
The Height of the Eye, is a Perpendtcular let fall from it, to the Ground Plane.

B.
D E F. V.

$$
[2]
$$

DEFINITION V.

The Diffance of the Eye is a Perpendicular let fall from it, to the Perfpective Table.

D E F. VI.

The common Section of the Perfpective Table, with the Ground Plane, I fhall call the Ground Line (or Section.)

D E F. VII.

The Horizontal Line, is a Line in the Table, Parallel to the Section or Ground Line, and of the Height of the Eye above it.
D E F. VIII.

The Principab Ray, is the Line let fall from the Eye Perpendicular to the Table, and therefore is equal to the Diftance of tbe Eje from the Table.

D E F. IX.

The Diftance of any Point in the ground Plane, from the Table, is a Perpendicular let fall from the Point, to the ground Lime.

DEF. \mathbf{X}

$$
\left[\begin{array}{ll}
3
\end{array}\right]
$$

DEFINITION X.

Direct Parallel Lines, are fuch as cut the ground Line or Section at Right Angles.

D E F. XI.

Oblique Parallels, are fuch as are drawn cutting the ground Line or Section, at any oblique Angle whatfoever.

> D E F. XII.

Trapfverfe Lines, are thofe which cut the Direch Lines at Right Angles.

D E F. XIII.

Radial Lines, I call fuch as run up from any Points in the ground Line, to any Perfpective Focus, whether the Point of Sight, or accidental Point, b σ.

$$
\dot{\mathrm{D}} \mathrm{E} \boldsymbol{F} . \text { XIV. }
$$

By the Point of Sigbt, is underftood that Point in the Table, in which all the direct Parallels feem to concur. How it is determind, we fhall fee afterwards.

$$
\mathrm{B}_{2} \quad \mathrm{DEF} . \mathbb{X V}
$$

[4]

DEFINITON. XV.

The Accidental Point, is a Point which bears the fame Relation to fuch Parallels as are obligue to the Ground Line, as the Point of Sight does to thofe which are perpendicular to it: That is, as the Point of Sight is that in which all the direet Parallels feem to concur; fo in like manner, the accidental Point, is that in which any oblique Parallels do appear to the Eye to meet and unite. So that tho' (ftrictly fpeaking) there be but one Point of Sight; yet, there are innumerable accidental Points, even as many, as there are different Degrees ofObliquity, in which the groundLine or Section, may be cut by the foremention'd oblique Parallels.

DEF. XVI.

The Point of Diftance, is a Point in the Horizontal Line of the Table, determin'd therein, by laying off from the Point of Sight, either way, the Eyes Diftance from the Table.
D E F. XVII.

A Point of Incidence, is a Point in the ground Line, determin'd by à Perpendicular, let fall from any Point in the ground Plane, thereto.

DEF. XVII

$$
[5]
$$

DEFINITION XVIII.

The Perfpective of any Point, is there, where a uifual Line drawn from the Eye interfects the Table; or 'tis the Interfection of the Plane of the Table, by a vifual Line drawn to that Point:

D E F. XIX.

The Perfpective of a Line either Strait or Curve, is the common Section of the Plane of the Table, and the vifual Superficies' (whether Plain or Curve) whofe Bafis is the aforefaid Line.

> D E F. XX.

The Perfpective of any Plane Figure, Rectineal, or Curvilinesl, is the Section of the Cone or Pyramid (whofe Vertex is the Eye, and Bafis, the Figure propos'd) by the Plane of the Table.
D B F. XXI.

The Perfpective of a folid Figure, is the Aggregate of the Perfpectives of all the Planes (whereof that Solid is compafed) aptly and truly fet together, upon the plane of the Table,

> PEF, XXII

[6]

DEFINITION XXIL.

The Optick Angle, under which any Object appears, is that which is comprehended under 2 Lines drawn from the Center of the Eye, to the two Extremities thereof.

According as this Angle is bigger or lefs, fo we commonly fuppofe things to appear bigger or lefs to us. And it is moft certainly true, that they do fo, in Varieties of Cafes: But that they do fo in all Cafes, is as certainly falfe. As generally as the Rule paffes amongft the Opticians, it is not univerfally true, that an Object which is feen under a bigger Angle than another Object is, does therefore appear bigger to the Eye. And this will be fufficiently made out, by the following Demonftration, which is Experimestal and Osular.

Suppofe that there were placed at A, (Fig. 2.) the Eye of a Spectatour, in fome long Roons or Walk; the Eyes Height being A B, and BK the Walk or Ground Plane parallel to the Horizon. Let the Heighth of the Spectatours Eye, viz. A B, be laid off in the Ground, from his Foot. at B; ta N ; fothat $\mathrm{BN}=\mathrm{BA}$. Then fince ABN $=90^{\circ}$, 'tis plain that BAN $=$ BNA $.45^{\circ}$. Therefore BAN $>$ NAI, NA. ${ }^{\prime}$, NAK,

[7]

N AK, or any other Angle, comprehended between the Horizon B K, and a Ray drawn from the Eye at A. But it is plain in Fact and Experience, that the Diffance BiN Thall not appear equal, or bigger, but lefs than NI, NV, NK, \uplus°. in the Horizontal Line: And yet $\mathrm{B} N$ is feen under a bigger Angle than any of all the Diftflances, NI , ơc.

Therefore it is not univerfally and abfolutely true, that every Object which is feen under a bigger Angle than another, does therefore appear bigger than that other Ob . ject does. Q. E.D.

COROLLARY

Therefore neither is it univerfally true, That Objects must be feen under equal Angles, in order to their appearing equally Big.

For here, the Diftance NI ex. gr. appears as big to the Eye, as B N does, and and yet the Angle N A I, is much lefs, than BAN. Nay, (according as the Diftance is taken) N I fhall appear prodigiouny bigger than BN; tho' the Angle (as is obferved) be ftill demonftrably lefs; So that there is no Doubt of the Truth of the Corollary.

And therefore I muft fay farther, That fince this Rule (of Objects appearing equally $\mathrm{B}_{4} \cdot \mathrm{Big}_{\mathrm{g}}$

[8]

Bigg, which are feen ander equal Angles) is fo frequently made ufe of in moft Books of direct Opticks, and fo many things are grounded upon it, as we find there are; an accurate Enquiry ought to be made, in what Cafes it holds true, and what not. In the mean time, I fhall offer a few things concerning it, which Reafon and Obfervation together, render me pretty well fatisfied of the Truth of.
I. That the Rule holds true, when it fpeaks of Spaces or Intervals, taken in any Line, on each fide a Perpendicular, let fall from the Eye to the faid Line, and equaly removed from that Perpendicalar.
2. That it is true likewife, when it fpeaks of Lines Parallel to each other, and which lie in fuch a Pofition to the Spectatour, that a. Line drawn direcitly forwards from bis Foot, croffes thofe Parallels at Right Angles. Let the Parts veiw'd, lie in equal Circumffances of Dif ance, from this Crols Line; and then, fuch Segments of thefe Parallels as are intercepted bet ween vifual Rayes making equal Angles, will without doubt appear of equal Bignefs, when furvey'd with a free Calt of the naked Eye.
3. That the Rule is always fatfe, when it is apply'd to Spaces, taken in one and the fameRight Line, one and the fame way; 4y which I mean, only their being taken on

[9]

one and the fame Side of a Perpendicular, lee fall from the Eye. Thus for Example, it was in the Cafe of the Demonftration produced: And it would be the fame, if we were to look in Breadth or Height, as welt as in Lemgth.
I do not exclude other Cafes, befides thefe which I have mention'd, from being Inftances either of the Truth or Falfehood of the Rule. Thefe are only fuch, as are the moft common, and the moft eafie to be try'd.

S CHOL. J. To the Preceding Definitions.

Tho' the Perfpective Table may be plac'd in various Poffitions, with Refpect to the Eye, or Ground Plane, whereon it ftands, yet it is commonly imagined to be perpencular to the Ground Plane; this Pofition being of all others, the moft ready and familiar to us. Tho' we fhall fiew in the enfuing Part of this Treatife, how the Rules of drawing Pieces of Perfpective, upon Tables Perpendicular to the Horizon, may be accommodated to Tables, in any other given Pofition whatfoever.

In like manner, tho' we may conceive the Appearances of Objects, to be delineated upon Curve Superficies, whether Con: vex or Conicave, as well as on fat or plain Superficies;

[10]

Superficies; yet for the fame Reaion as before, the Perfpettive Table is moft commonly taken to be a Plane.

S C H O L. II.

Hitherto we have only mention'd fuch . Lines (amongtt the Definitions) as lie in the Horizontal, or Ground Plane beneath the Eye. But as we may conceive an infinite Number of other Planes, ex. gr. Ho-; rizontal ones above the Eye, Direct, Declining, Inclining; and fuch as do both Decline, and Recline, or Incline together; fo the various Sorts of Lines which may be drawn in thefe Planes, are alfo to be confidered, and will all fall under the General Rules, hereafter to be deliver'd.

> EXPLICATMION to the foregoing

Fig. I. W K L the Geometrical or Ground Plane.
A B DC the Perfpective Plane or Table.

- H the Place of the Eye.

PH the Heighth of the Eye, = EF in the Table.
HE the principal Ray, or Difance of the Eye from the Table, which is = PF in the Ground Plane.

DY,

[. 11]

DY, C n, OT, y S, direet Lines. V W, XZ, Two tranfuerfe Lines. E the Point of Sight.
$\mathrm{mR}, \mathrm{rs}, \mathrm{t} U, \mathrm{M} Q$, oblique Parallels.
Dt MaOfymrdC, the Section or ground Line.
$\mathbf{P n}$, a Line from \mathbf{P} parallel to the oblique Lines $\mathbf{t U}, \mathrm{M}$.
Pd Parallel to the oblique Lines $m \mathrm{R}$, rs , fAGE g. BL, the Horizontal Line.
H G, a Line from the Eye parallel to \mathbf{P} n.
Hg , a Line from the Eye parallel to Pd .
\mathbf{G}, g, the accidental Points, relating to the oblique Parallels
$t \mathrm{U}, \mathrm{MQ}$, and mR , rs, refpectively. •

PROP. I.

The fartber Parallel Lines are produced from the Sight, the nearer they feem to approach to each otber; provided the Eye be placed any where, between the faid Paralles.

This is true, whether the Eye, be in tba - Same Plane, with the Parallels propofed, or whether it be raifod above, or depreffed belon thom.

1. Let the Eye at A, be placed in the fame Plane, with the Parallets BK, R M. (Fig. 2.)

CON .

$$
\left[\begin{array}{ll}
12
\end{array}\right]
$$

CONSTRUCTION.

Draw D C, LI, MK, ©r. Perpendir cular, as alfo AQ Parallel to the Lines BK, RM. . .

DEMONSTRATION.

The \triangle ls LAI, MAK (whofe common Vertex is A) have the Bafe LI = the Bafe M K; but Perpendicular AQ> Perpendicular AP (by Hypoth.) therefore Angle MAK $<$ LAI, therefore MK appears < than L I, and the Parallels appear nearer to each other in the Points M, K, than in L, I. Q. E. D.
2. Let the Eye at B, be placed above or below the Plane, in which the Parallels AH, DK, are drawn. (Fig. 3.)

CONSTRUCTION.

Crofs the Parallels, with the Perpendicular Lines AD, EG, HK, ěc. From B, let fall $B C$ perpendicular to the ground Plane, and carry out the vifual Rayes BE, BG, BH, BK. From C, draw CI Parallel to A.K, D K; and tho' the Lines BC and C I, conceive a Plane to pafs, whofe common

$$
[13]
$$

common Section, with the Ground Plane, will be that fame Line CI; and with the two vifual Planes, will be BF and BI. Lafly, join the Points C and K , with a Right Line.

DEMONSTRATION.

Becaufe (Conftr.) BC is Perpendicular to the Plane ADHK, therefore 'the $\triangle^{\text {is }}$ BCI, BCK are Rectangular at C.; Farther, fince (Conftr.) IK is perpendicular to CI, therefore the $\triangle^{\mathrm{L}} \mathrm{CIK}$ is alfo rectangular at I .

Therefore, $\mathrm{BK}^{q}=\mathbf{C K q}^{q}+\mathrm{BCq}^{=}$
 that $\mathrm{BKq}=1 \mathrm{~K}^{\mathrm{q}}+\mathrm{BIq}$. Therefore the Angle BIK is a Right one, and therefore BIH is a Right one. After the fame manner, it may be demonftrated, that the Angles BFG, BFE are Right ones. Therefore, in the Rectangular Triangles, BIH, BFE, becaufe the Bafe HI =EP (Hypoth.) and $\mathrm{BI}>\mathrm{BF}$ (for by Hypoth. $\mathrm{CI}>\mathbf{C F}$) therefore fhall Angle EBF $>\mathrm{HBI}$.

For the fame Reafon, GBF $>\mathrm{KBI}$. Therefore, GBE $>$ KBH. Therefore the Parallels feem nearer to each other, in the Points H, K, than in E, G. Q.E.D.

COROL.

$$
\begin{gathered}
{[14]} \\
\text { COROLLARYI. }
\end{gathered}
$$

It is certain therefore, that Lines which are really Parallel, cannot be feen Parallel.

For to be feen Parallel, they mult appear Equidifant in all their Parts; whereas we are affur'd by the foregoing Demonftration, that they feem continually to approach each other: That is, they appear Converging.

COROL. II.

Parallel Lines indefiwitely produc'd, will appear to the Eye, to meet in a Paint; becaufe the Optick Angle, fabtended by the Interval or Diftance between them, at that Indefinite Prolongation, will become Infenfible, or of no Quantity in a Pbyfical Senfe.

PROP. II.

The Rate at which Parallels feem to converge, is determin'd by the Reciprocal Proportion of the Tangents of the Optick Angles, to the Perpendicular Difances of the Eye from the faid Parallels.

1. If the Eye be in the fame Plane: (Fig. 2.) Let the Parallels be $R \mathrm{M}, \mathrm{AQ}$, and

[15]

and the Eye at A, and the Rayes AM, AL, AQ, cut the Line DC, in F, E, O, rerpectively.

From Similar $\triangle^{\text {ls }}$ AMQ, AFO, $A O: A Q:: F O: M Q$,
From Similar $\triangle^{\text {ls }}$ ALP, A EO, AO:AP: EO:LP,
Therefore $A Q: A P:: E O: F O$; But EO: FO:: T, EAO:T, FAO. Therefore AQ:AP:TEAO:T, FAO. Q.E.D.
2. If the Eye be out of the Plane, (Fig. 3.) let the Eye be at B, the Parallels A H, CI, and the vifual Rayes, as before.
In the Rettangilar $\triangle 1$ BI H, $B I: H I \because R^{d}: T, H B f$, In the Rectangular $\triangle^{1} B F E$,
 Therefore BI:BF:: T, EBF:T,HBI. Q.E. D.
COROL. I.

Hence we fee how the wifibleMagnitude of an Object increafes or decreafes, in its various Approaches to, or Removes from the Eye, wiz: thus, That the apparent:Ditr meters; are reciprocally as the Diflances from the Eye.

COROL. II.

$$
\begin{gathered}
{[16]} \\
\text { COROL II. }
\end{gathered}
$$

The Eye, in the fame Pofition, looking \#f the fame Object; removed to various Diftances, EF, HI, there is a lefs Propor- I tion, between the Tangents of the Optick Angles, when the Eye is placed above at B, than when it is below at \mathbf{C}.

CONSTRUCTION.

Draw F L Parallel B I.
DEMONSRATION.
T, ECF:T, HCI:: IC:CF, by No. r. IC: CF::IB:LF, by Similar $\triangle^{\text {ls }}$ BIC, LFC.
Therefore,T,ECF:T,HCI::IB:LF. But T, EBF:T, HBI : $: \mathrm{IB}:: \mathrm{BF}$, by $\mathrm{N}^{\mathrm{o}} .2$. And IB:LF > IB: BF. Therefare, T, ECF: T, HCI > T, E BF:T, HBI. R.E.D.

COROLLARYII.

Parallel Lines feem to converge fafter, to an Eye pofited in the fame Plane with them, than to an Eye raifed above, or deprefled belen that Plane.

SCHOL.

$$
[17]
$$

S CHOL.

In argaing here upon the Appearances of Parallels, we have taken the Truth of

- the old Maxim for granted,That a Space feen under a lefs Angle, appears lefs, and under a bigger, greater. And I believe the Cafe is fo plain, that there will be little Difpute about the Truth of it here.

PROPOSITION. III.

If the Eye be feated any where without the Parallels, they will feem to go fartber from each other (or their Intervals to widen) to a certain Term of Diftance; and after that, continually to approach each other.

CONSTRUCTION.

Let the Parallels LA, KC, (Fig. 4.) whofe Difance E G, is bifected in F , and and FQ drawn parallel to them. Let the Eye be at D , in the Line EG produced. Upon the Center F, with the Radius F D, ftrike the Circle DIH. On each other Centers, as M and B , taken at Liberty in the Line R F, and with the Radii MD, B D, ftrike other Circles; the former of which, imagine to cut the Parallels in the Points \mathbf{L}, K; and the latter, in N,P. It is plain, that the Lines, LK, N P, Shall each be equal

[18]

equal to EG. For fince the Centers M, B, are taken in the Right Line F R, which Line perpendicularly bifects EG, in the Point $F_{\text {; }}$ it is evident that the Lines, joynimg the Interfections of thefe Circles, with the Parallels, viz. I $\mathrm{H}, \mathrm{LK}, \mathrm{NP}$, fhall be fo many equal Chords, in thefe feveral Circles. Draw the Lines DI, DH, D N, DP, DL, DK.

DEMONSTRATION.

Becaufe the Angle DF B is Lr, therefore in the $\triangle^{1} D F B$, the Side $D B>D F$. So in the $\triangle^{1} D F M$, for the fame Reafon, DM > DF. Therefore the Circles, whofe Centers are B and M, and Radii DB, DM, are.greater than the Circle, whofe Center is F , and Radius D F. Since therefore the Chord $\mathrm{IH}=\mathrm{NP}=\mathrm{LK}$, and the Circle DIH is the leaft of all the Circles; alfo the Angle IDH fhall $>$ NDP, or LD DK. And therefore the Parallels appear fartheft afunder in IH , and from that Limit feem to approach to each other, both ways, viz. on one fide towards NP , and on the other towards LK. R.E.D.

SCHOL.

As it has been fhewn in fome Inftances, that Lines which are truly and frictly parallel, will feem not to be Parallel ; fo it may

[19^{\prime}]

may allo be fhewn bow, and in what Cireum. flances, Lines which are really not Paralled, may yet appear either Parallel, or elfe as Parallels. For we muft take Care here, not to confound together two Notions, which in the Nature of Things are very different, viz. being feen as ParaRels, and being feen Paratiel. For two Lines to be feen Parallel, is for thofe Lines to appear equally diftant in all their Parts (as was hinted before, at Cor. 1. Prop. i.) But for two Lines to be feen as Parallels, is for thofe Lines to appear, after the manner of Parallels, or to appear as Parallels ufe to appear; that is, to foem inclining and converging rowards each other, after the manner that fuch Lines feem to do. Thus 'tis demonftrable, that two Right Lines, which are not paraliel to each other, may yet appear to the Eye, (difoofed at a cersain Diftance and Poffition) as Parallel Lines ufe to appear.

For if thofe Limes be prodaced, till they concur, and the Angle:contained between them, be biferted, and the bijecting Line be croffed at Right Alughtes, by two Right Lines, terminating on each Hand, in the converging Lines firft given; then a Circle being deforib'd, about the Trapezism thus formend, and two Lines to touch this Circle, being drawn from the Point, wibire the Limes at firft produced, met ore wiother'; axdid dafty, the two Points of

[20]

Contalt being joined by aftrait Line: The Diftance' between the Point of Concour $/$ e aforemention'd, and the Point where the Line joyning the Contaits, croffes the bifecting Line, is the Diameter of a Semi-Circle, which will be the Locus requir'd $;$ or fuch, that the Eye being placed in any Point thereof, the given converging Lines fhall appear to it, as Parallels would appear. The Analyfs of this Problem, evinces, That the Locus is a Circle, as alfo how it is to be confructed; but as the thing it felf is not effential to my Purpofe, fo neither is this a proper Place for fuch Enquiries.

Again, it might be fhewn, in like manner, how two lines not parallel, one being a Right Line, and the other a Curve; may, notwithftanding, appear Paralleb, or equidiftant in all their Parts. For if a ftrait Line be drawn in a Plane, and Some fixed Point taken therein, as a Pole or Center, about which, the faid Line revolves, keeping fill in' the faid Plane, while, at the fame time, an--other Right Line making any oblique Angle, with the Plane, revolves about the Jame Point, defcribing thereby a. Conical Surface: alfo if a Second Plane be conceived to be drawn, either Perpendicular or Oblique to the former Plane, by which Means, fome one or other of the Conick Sections is produced, then 'tis demonftable, that to the Eye, pofited

[21].

in the Pale (which is alfa the Vertex of the Cone) all thofe unequal Intervals, contain'd between the Conick Curve, and that Righs Line, which is the common Section of the two aforefaid Planes, : will appear of equal Bignefs, provided the common Sections of the Planes of Vifual Rayes, with the Second Plane abovementiond, be all Parallel one to another. N. B. When the Second Plane. is perperidicular to the \mid Firft, the Curve form'd, will be an Hyperbola; wher Oblique, a Parabola, or Eldipfss.
PROPIV,

Al "Planes Seated above the Eye, Jeem to. fink ibe more downwards, the further they are produced: Thofe that are below the Eye, feem 10 rije. .upwards; thofe on the Right Hand to approach to the Left, and thofe on the Left, to the Right.

CONSTRUCTION.

Let the Eye be A, (Fig. 2.) its Heighth A B, a Plane above the Eye R M, a Plane below the Eye B K, the Table DC. Draw. the Rayes AL, AM, AI, AK: Then fhall the Points L, M, appear in E, F, and the Points I, K, in G, H_{p}

DEMONSTRATION:
In the Rectangle Triangles RAL, RAM; whofe Bate B A is Common, the PerpenC 3 diculaf

$$
\text { [. } 22 \text {] }
$$

dicular; $\mathbf{R} \mathbf{M}>\mathbf{R}$ L, therefore the Angle RAM>RAL, therefore AM falls withont the Line AL, and therefore cats the Table DC in a Point Elower than E:'

In like Manner, it will be proved that the Point K appears Higher in the Table tham I.
And fo it may be prov'd by the fame way of ariguing, That Planes lying on the right Hand of the Eye, feem to apptoach nearer and nearer to the Leffor, as thofe alfo din the Left, to approach to the Right.

For we need only to fuppofe the Eye A, to be plac'd between two Planes, as BK on the Rigbt, and RM on the Left. Therefore, Gi. O.E.D.

SCHOL

The Truth of the Propofition may otherwife thus appear. Siace any vifible Point as M, appears not to the Eye in the fame Place that it really is in, but in fome other Pface in the fatie Ray $A M$, nearer, as at N_{i} - lo likewifey fince the Poine T, is not feen fi T, but fomewhere nearer, as at 's : For'this teafon, the Space TM fhall appear in $n \cdot N$, that cis, falling downwards:

And forrithe fames Reafon, the Space V, K Challiappear in $s S$, rifing upwards towards the Eye.

But

$$
[23]
$$

But 'tis to be obferv'd, that as the Points L and I, are not feen there, but fomewhere nearer in the fame Rayes $A L$, and $A I_{\text {; }}$, fo confequently the Space $L M$, cannot appear in $L N$, nor $I K$ in $I S$, and therefore the Reprefentation of the Planes $L M, I \cdot K$, cannot be the Lines $L n N n, I s S_{s}$, as they are here drawn from the Points L and I: Becaufe, I fay, the Points L and I, being not feen where they are, but nearer to the Eye A; the Lines $L n N n$, Is S s, cannot begin at the Points L and I, but at fome other Paints between them and the Eye A. As for the Species of thefe Lines, it's manifeft they cannot be frait Lines, but Curves, approaching continually nearer and nearer to the Line $A Q$ produc'd.

Which Line $A Q$; will be as a common Afmptote to them.

The Nature of thefe Lines is to be determined by Obforvation and Experiment; namely, when it fhall be determined at what Diftances the Points T, M, do appear in the Rayes AM, AT, from their true and real Places; that is, how far the Points n, N, orc. are from the Points T, M, \& \quad c.

From the Propofition before demonftrated, we may fee the Reafon of feveral Appearances. which are very commoil.

$$
\text { G } 4 \text { COROL. }
$$

$$
[24]
$$

COROL.I.

The Floors and Pavements of Buildings (efpecially thofe that are yery long) feem to rife upwards, towards the Eye of the SpeCtatour, that enters them.

C O R O L. II.

For which Reafon, in Cburches, ex. gr. the Pavement, in going from the Door, towards the Altar, need not be raifed above the Level, fo that a Perfon fhould continually afcend in approaching towards the Latter, from the Former: Becaufe, befides that there is already an Afcent, which proceeds from the Principles of $O p$. ticks; which therefore ought not to be made yet more confiderable, by an actual Elevation of the Floor; there would be this farther Inconvenience, in raifing it above the Level, viz. That the Orders of the remoter Columns, being therefore neceffarily fhorter than thofe nearer the Eye, they would be fo immoderately fhortned in the Appearance, as to offend the Spectator's Eye very much at his Entrance,

COROL. III.

The Roofs and Cielings of Buildings, appear gradually to fink down towards the . E e.

COROL.IV,

[25]

COROL. I*.

And therefore, any Roof, or Contignation ought to be fo much the Higher, by how much, the Area which lies under, extends it felf farther in Lengtb.

For otherwife, at a cgnfiderable Diftance, it would feem to hang down upon the very Ground it felf.

COROL.V.

Long Rowes of Columns or Pilafters, Trees, Walls, and the Sides of Buildings, contract themfelves to the Eye, and feem to grow narrower and narrower.

> COROL. VI.

And for this Reafon, in order to make Profpects of this Kind truly pleafing and agreeable; Care fould be taken, that the Breadth or Widene/s of them, be duly proportion'd to the Length they are defign'd to be of.

SCHOL.

A Man may at any time, experiment the Truth of the foregoing Corollaries, in a long Portico or Piazza, adorn'd with Or: ders
ders of Pillars. There he may fee, how the Pavement feems to rife, the Roof to fink down towards the Eye, and the Side-walls to incline to each other; and all verging to a Point : which Phænomenon was molt accurately defcrib'd by the Philofophical Poet, in thofe excellent Lines.

Porticus aquali quamvis eft denique ductu Stanfque in perpetuum paribus /uffulta Columnis,
Longa tamen in parte abfumma cum tota vir detur,
Paulatim trabit angufti faftigia Coni;
Tecta Solo jungens; atque omnia Dextera Levis,
Donicum (or Donec) in obfourum Coni sonduxit Acumen.

Lucret. Lib. 4. COROL. VII.

The Capitalls of Pillars appear inclining downwards, and the Pedefals rifing upwards.
C Ó R O L. . VIII.

The Horizon appears higher, than it really is:- For, becaufe of the immoderate Diftance between it and the Eye of the Spectator; it feems to be of an equal Height

[27]

Height with the Eye it felf. And therefore every Spectator has a different optical Horizon, according to the different Altitude of his Eye above the Plane of the real fenfible Horizon (which is a Tangent to the Surface of the Earth, in that Point where the Perfon ftands.)

C OROL. IX.

For the fame Reafon, the Convex Sur- face of the Sea, to an Eye placed thereon, appears differently Protuberant and Curv'd from what it is in it felf.

COROL. X.

It follows likewife, that if a Row of Columns (ex. gr.) all equal in Height, and Perpendicular to the Horizon, were difpos'd in Order bexeath the Eye; thofe which are the remotest, would appear to be lifted up higber, in Proportion, than the reft.

But if they ueve difoofed above the Eye, thofe which are the remotest, would feem to be more funk or depreffed, than the pearer ones.

For by the Propofition, this is true of any Points (in thefe Magnitudes) which are terminated in the fame Horizental Line; therefore, it is true of all Points in them, terminated by Horizontal Lines; that is, of the whole Magnitudes themfelves.

SCHOL.

[28]

S C H OL.

From this last Corollary; arifes another Confideration which deferves Regard, viz. That Superfcies, which are exaclly plain and level to the Horizon, plac'd ex. gr. above the Eye, muft neceffarily appear funk in and hollowed.

This infers the Reafon and Ufe of thore Scamilli, whereof Vitruvius fpeaks, as a Remedy to prevent fome unpleafing Appearances, in a piece of Arcbitecture. Stylobatam ita oportet exaquari uti babeat per medium adjectionem per Scamillos impares; fa exim ad Libellam dirigatur, Alveolatus oculo videbitur. Vitruv. Lib. 3. Cap. 3.

The fame Confideration is likewife of ufe in the fhaping of Images and Statues, which are to be plac'd at confiderable Heights above the Eye. For a Figure which fhews all the exact Symmetry and Proportion, in the World, to the Eye, at one Elevation or 'Diftance, will perhaps, lofe all thofe Charms, and become downright ugly at another. So that in thofe Cafes, Art is to confult and fee, what is to be Added: or Taken amay; that the great Ends of Beauty and Pleafure may be provided

[29]

for, according to the Nature and Conditions of the Place from which an ObjeCt is to be viewed.

Alia enim ad manum Species effe videtur, alia in excelfo, non eadem in conclufo, difimilis in aperto; in quibus magni fadicii est. Opera, quid tandem faciendum fit. Vitruv. Lib. 6. Cap. 2.
And again, Cum ergo qua funt vera, falfa चैideantur, σ^{\prime} nonnalla aliter quam funtt oculis probentur; non puto oportere effe dubium, quix ad Locorum Naturas aut Necefitates, DetraCtiones aut Additiones fieri debeant: Fed ita ut nibil in bis operibus defideretur.

It was owing not only to Knowledge in in Sculpture, but to Skill in Proportions, and efpecially to the Knowledge of Optical Appearances, and the Reafons of them'; that the celebrated Phidias, at once furpriz'd all the. People of Athens, and triumphed over Alcamenes, who was his Ri val, for Fame and Glory in the Art of Carving.

> The STOR $\begin{aligned} \text { we have in Tzetzes, Var. }\end{aligned}$ Hiftor. Cbil. 8. Hift. 193.

'THough thefe Perfons were both of them excellent Statuaries, yet - Accamenes underftood only the Mechanick - fervile Part of his Art; whereas Phidias being

[30]

- being well feen in Geometry and Per/pe. ' Iive, knew how to render his Work - compleat by the Rules of thofe Sciences.
' Now, the Athenians having appointed a ' Statue of Minerva to be fet up in the - Market Place: Each of thefe Artifts, ' was order'd to imploy his beft Skill in 'the making of one. Accordingly, Alca' menes made a Statue of fuch charming
' Beauity, to an Eye which veiw'd it at
' \& fmall Diftance; that all the People at ' firft Sight, adjudged him the Victory. 'And they thought themfelves ftill more ' in the Right, when Pbidias's Work ap'pear'd. For, he confidering at what
- Height the Statue was to be plac'd, had
' hhap'd it accordingly; making the Coun' tenance horridly diftorted, and all the ' Limbs fo difproportion'd, that it look'd
' more like the Figure of a Devil than a ' Goddefs. And the Mob (whio never judge ' by Reafon, and the Rules of Art, but by ' prefent Senfe) were well-difpos'd to have ' made him fenfible of their Refentments, ' upon the Score of the Affront they 'thought was offer'd to Pallas; in making 'fuch a filthy Thing to reprefent her:
- However, they houred him, and cried
' up Alcamexes for an Artift beyond Com' parifon. And thus Matters food (Pbidias
- enduring the Perfecution of the ignorant
(Rabble)

$[-31]$

' Rabble) till both the Statues came to be
' fet up at the appointedHeight. But then the
'Scene was quickly chang'd. All the foft
'Strokes and Graces of Alcamenes's Image,
'quite difappear'd, as on the other Hand,
' did the rough and barbarous Features of
' that made by Pbidids. So that now (both ' being view'd at the proper Diftance) the ' Former appear'd ugly, and the Latter. 'exquifitely fine and beautiful: And fo 'Pbidias, (befides the Prize) went off with 'as much Praife, as before he had Con' $t e m p t$, from the Common People.

Such Trials of Skill are fometimes feen in other Arts befides Sculpture; and there are more Alcamenes's, and Phidias's, befides thofe who contended at Athens.

PROP. V. THOR. V.

If the Object be a plane Figure, Seated in a Pofition parallel to the Table; its PerSpective will be a plane Figure fimilar thereto. (The Piature and the Original, will be like each other.)

Tho' this may eafily be conceiv'd, for the Section of the vifual Pyramid or Cone, by a Plane parallel to its Bare ; I hall, notwithftanding, demonftrate it in Form, for the

$$
[32]
$$

the fake of thofe who may defire to fee a ftrict Proof, for all the Conlufions advanced to them, in this Science.

CONSRUCTION.

The Object (Fig. 5.) being the Figure DEFL; from the Eye at A, draw to the feveral Angles thereof, the vifual Rays AD, AE, ơc. by which Means the optick Pyramid, ADEFL is formed, and is alfo cut by the Plane of the Table NRKS Parallel to DEFL, the Section produced being BCGI. Draw LE, and IC.

DEMONSTRATION.

Becaufe the two parallel Planes are cut by the Plane AEF; the common Sections FE, GC, Thall be parallel. Therefore the $\triangle^{1 s}$ AGC, AFE, are Similar. So likewife, are AGI and AFL, and for the fame Reafon $A C I$ and AEL.
Wherefore, AG:AF: GC:FE.
Alfo, AG:AF:: GI: FL.
Therefore, GC:FE:: GI:FL.
Alfo, AG:AF:: AC:AE.
And AC:AE::CI:EL.
Therefore, AG: AF::CI:EL. •
Therefore, CI:EL:: GC:FE::
GI: FL. Wherefore, fince the Sides of
the

[33]

the $\triangle^{1 s}$ CIG, ELF, are thus proportional, it follows, that they are Equiangugular.

And thus may all the reft of the $\Delta^{1 s}$, whereof the Original, and the Image are compofed, be fhewn to be Similar.

Therefore the polygonal Figures themfelves are fo, Q.E.D.

C OROL. I.

The Object being any Rectilizeal plane Figure, its Perfpective is Difimilar to it, when its Pofition is not Parallel to the Plane of the Table.

But if a Circle; its Perfpective may be Similiar to it, that it may be a Circle in fome certain Pofition; tho' it does not lie Parallel to the Table, becaufe the vifual Cone may be cut fubcontrarily, by the Plane of the Table.

Thus (Fig. 6.) fuppofe the Object DE a Circle, the Table GD, the Eyes Diftance BD. We may determine from thefe Data, - a proper Height of the Eye as FB , fo that the vifual Cone DFE may be cut fubcontrarily in CD, and confequently the Perspective be a Circle too. Take $\mathrm{BA}=\mathrm{BD}$, and then bifect the Line AE in H , fo that AH or $\mathrm{EH}=\frac{\mathrm{DE}+2 \mathrm{BD}}{2}$; on the Cen-

[34]

ter H , and with the Radius AH frike a Circle, cutting a Perpendicular from the Point B, in F; which will be thePlace of the Eye fought, and confequently FB its Height. Joyn AF. The Angle AFE $=$ L (becaufe of the Circle) therefore fince FB Perpendicular to AE, alfo the Angle AFB fhall = BEF. But becaufe $\mathrm{AB}=\mathrm{BD}$ (Conftrut.) therefore $\mathrm{BFD}=\mathrm{BFA}$, therefore BFD $=$ BEF. But BF parallel to GD, therefore $\mathrm{BFD}=\mathrm{CDF}$, therefore $\mathrm{DEF}=\mathrm{CDF}$, therefore the \triangle^{1} FCD is Similar to the \triangle^{1} FDE. Wherefore the Cone is cut fubcontrarily, and the Perfpective CD is a Circle. R.E.D.

COROLLARYII.

Hence may be found fuch a Diftance, of the Object or Eye, from the Table, that the Perfpective fhall not only be Similar, but alfo in any given Proportion to the Original. Ex. Gr. If the Eyes Diftance being given, fuch a Diftance between the Object and the Table were required, that DLFEZT : BIGCOV : : $p: q$. Since $\mathrm{p}: \mathrm{q}:$: DLFEZT : BIGCOV :: EFq : GCq (becaufe the Figures are Similar) :: AEq : ACq (Similar $\triangle^{\text {ls }}$) :: $\mathbf{A Q}^{q}$: APq (Similar $\Delta^{1 \mathrm{~s}}$.)
'Tis plain, that fuppofing the Line APQ perpendicular' to the two Planes, the Diftance $P Q$ is eafily determined; viz. $P Q=\frac{\sqrt{ }-\sqrt{ } q}{\sqrt{ } \cdot q} \times A P$.

COROLL. III.

The ObjeCt continuing in a Pofition pa= rallel to the Table; whether the Eye moves nearer or farther from the Table, while the Object keeps its Diftance, or the Object moves while the Eye keeps the fame Diftance, or the Table moves, while the Eye and Object keep their Places; in either Cafe, there is no Alteration, of the Speicies, of the Perfpective, but only of the Magnitude thereof. But of thefe things, in another place.

PROP. VI.

All the Conical Sections, are only the PerSpective Reprefentations of the Circular Line, of the Bafe, upon Tables in various Pofotions, to the Eye Seated in the Vertex of the Cone.

It will need no Figure, to prove this Propofition to them, that know the Cone, and the feveral Sections of it.

D 2
For

$$
\text { [. } \left.3^{6}\right]
$$

For the Cone being cut by a Plane, parallel to a Plane, which coming out of the Vertex, touches the Cone in its Side; for which is all one, meets the circular Bafein one Point only) if the Plane of this Section, be made the Perfpective Table, the Reprefentation of the Circular Arch, -will be a Parabolical Line.

But if the Table be parallel to a Plane, which meets not the circular Bafe, at all ; it will be an Ellipfis; or if parallel to a Plane, which cuts the Balis, an Hyperbola.

The Reafon is, becaufe the right Lines, drawn on the Surface of the Cone, from the Vertex, to the feveral Points of the Circumference of the Bafe (which Lines in this Cafe, are our vifual projecting Rays) do trace out upon the Planes of the feveral Sections (which are our Per Spective Tables). the Conical Curves ; which therefore are only fo many Peices of Perfpective, to an Eye pofited in the Vertex. Q. E. D.

COROL.I.

One and the fame Conick Section, may be the Perfpective of an infinite Number of different circular Arches. For the Geometricians demonftrate, that any Parabola, may be adapted to any Cone; and any Elippos or Hyperbola (though not to any Cone, yet

[37]

leaft) to various Cones, differing in Species.
C O R O L. II.

Any of the Conick Sections may be, the Perfpectives of each other, to the Eye (as before) plac'd in the Vertex.

Ex. Gr. Suppofe a Plane cutting the Cone, and producing a Parabola. Thro' the common Section of this Plane with the circular Bafe, fuppofe an infinite Number of other Planes to pafs, each cutting the Cone between its Vertex, and the Vertex of the foremention'd Parabola. Any oue of this infinite Number of Planes, being taken at Liberty, for a Table; the Eye fees the Parabola, as an Hperbola thereon.

And fo of any of the reft. The thing is fo plain, that any one, by only drawing a Cone, may abundantly fatifie himfelf of all the Particulars. -

S C H O L. I,

From this Generation of the Conick Seclions, wherein we confider them as the Perfpectives of the circular Bafe, arifes a Speculation, which is not unworthy of Notice; and that is this.

The whole Area of the Ellipfis in any Cone, lying all entirely above the Circular D 3 Bafis,

[3^{8}]

Bafis, or between the Vertex and it, is therefore, the Projection of that whole Bafis.

But the Hyperbola and Parabola, being Curves which do not include Space, but run out ad infinitum, are projected after another Manner. In the Parabola, ex. gr. that Part which lies above the circular Bafis, is the Projection of a determinate Arch of the Circle, and the remaining infinite Portion thereof below the Bafis is projected from the Complement (of the faid Arch) to the whole Circle. For the Laft projecting Rays is the Side of the Cone, parallel to the Axis of the Parabola.

In the Hyperbola, that Part which is a bove the Bafis of the Cone, is likewife the Projection of a determinate Arch of the Circle, but the remaining Infinite Portion belon the Bafis, is projected, not from the Complement of the former Arch, to the whole Circle, but from the Complement thereof, to that Arch, which is determin'd, by a Plane pafing out of the Cones Vertex, parallel to that which generates the Hyperbola. I fay, the infinite Portion of the Hyperbola below the Bafs of the Cone, is form'd, by projecting only that Arch (which lies between the Plane making the Section, and the Plane out of the Vertex parallel thereto) upon the Plane making the Section.

Now,

Now, as in all Projection whatfcever, either the Plane we project on, is plac'd between the Object and the Eye, or elfe the Object, between that Plane, and the Eye; fo it has been ufual to call the latter Sort of Projection, an INVERTED PERSPECTIVE, or a DEFORMATION: For in all the common Scenographick Reprefentations, the Table is always plac'd between the Eye and the Object. Now both thefe kinds of Projection take place, in that Generation of the Conick S'ettions, we are Jpeaking of. Nay, and both too, in the Formation of one and the fame Section.

The whole Ellipfis, is a regular Scenogra. phick Projection, the Table being between the Object and the Eye.

So likewife are thofe Portions of all Pa. rabolas and Hyperbolas, which lie above the Bafis of the Cone.

But the remaining Infinite Portions of thofe Curves, below the Bafis, are Inverted Perfpectives or Deformations; the Circular Arch, which is the Object projected, lying between the Eye, and thofe Parts of the Planes of thefe Sections, on which the Projection is made,

S C H O L. II.

Since the fame general Affections which are demonftrated of Cones, whofe Bafes D 4. are

[40]

are Circles, are applicable likewife to fuch Cones, whofe Bafes are any of the Conick Sections, (per Append. de Sectionibus Pyramidum quarum Bafes funt Sectiones Conica; M. de La Hire) 'tis plain from hence, that we may determine how, and in what Circumftances, any Conick Section, feated in the Ground Plane, fhall become any other Conick Section whatfoever in Per/pective: That is, what Section fhall be produced, by the Plane of the Table cutting any fort of Cone, whofe Bafe is either Ellipfis, Parabola, or Hyperbola.

P R O P. VII. (Fig. 7.)

It may be, that Lines, which are not parallel in the Ground Plane, may conse into parallel Lines on the Table. Or, The Perfpectives of Diverging Lines, may be Parallel.

Suppofe the Non-parallel Lines to be PD; NE, the Eye at K, its Height KV, the Table, RSCT.

Let the Eye be fo pofited, that the Lines PD, NE, may lie in the vifual Phanes KVD, KVE; whofe Interfections with the Table are AP and BN, and therefore the Reprefentations of the aforefaid Lines to the Eye at K.

I fay that AP is parallel to BN , if the Eye ba fo placed,

For

For becaufe KV is perpendicular to the Ground Plane, therefore the Planes KVD, KVE, are perpendicular to the Ground Plane. And becaufe the Table RSCT is likewife Perpendicular thereto; therefore AP , and BN, the common Sections of thefe Planes, are perpendicular to the Ground Plane, and therefore parallel to one another. R.E.D.

COROLLARYI.

The Trapezium PDNE is reprefented on the Table, by the Rectangle APBN.

COROLII.

Hence the vulgar Method of rectifying a deformed Object ; or placing the Eye in fuch Manner, that a rude and irregular Picture, fhall from a certain Point, appear regular and beautiful. For thus, the Trapezium PDNE, which may be as diftorted and unhapen as one pleafes, will fall on the PerfpectiveTable in the compact Form of a Rectangle, as APBN. And therefore were the Parts of any Image, fuppofe a Humane Face) difpofed up and down in the Cells of this Trapezium, they 'would appear, in an agreeable Order and Pofture to the Eye, in the correfpondent Cells of the Rectangle upon the Table.

COROL.

[42].

COROL III.

Hence it appears, that this Practice of Deforming, is rightly Term'd, An Inverted fort of Perfpective.

For as in the common Perfpective, a ReCtangle ex. gr. lying in the Ground or Horizontal Plane, is projected into a Trapezium upon a vertical Table, placed between the Object and the Eye; fo in Deformations, a Rectangle drawn in a vertical Plane, is projected into a Trapezium, upon a Horizoutal Table, which lies farther from the Eye than the Object does.

COROL. IV.

The Points D , and E , and confequently the whole Deformation, are determin'd, by drawing out the vifual Rays KA, KB, till they interfect the Ground Plane in D , E , and then joyning DE .
COROL. V.

Otherwife, the Lines VP, KA, and VN, KB , produced till they meet each other; meet in the fame Points D and E , as before.

COROL

[43]

COROL. VI.

The Line DE is parallel to PN, fo that the Deformation of a Rectangle, is a Trapezium, whofe two oppofite Sides are parallel.

P R O P. VIII. (Fig. 7.)

There is an infinite Number of Points, in which the Eje being placed, boall project Diverging Lines upon the Ground Plane, into Paratlel ones on the Table; and the Locus of thofe Points, is eafly determin'd.

Suppofing all, as in the foregoing Propofition: Produce the diverging Lines DP, NE, till they cut each other in V; at which Point, erect the Perpendicular VK, which extend at Liberty. I fay, the Perfpectives of the Lines DP, EN, fhall be parallel to each other on the Table, the Eye being placed in any Point of this $i s-$ finite Perpendicular.

For taking any Point therein, as K , for the Eye's Place, and drawing out the vifual Planes KPD, KNE; it's evident that thefe coincide with the Planes KVD, KVE which being perpendicular to the Ground Plane VDE, their common Sections with the

$$
[44]
$$

the Plane of the Table, AP, BN, will be demonftrated (as before) to be parallel to each other. Therefore, Oor. Q.E.D.

S C H OL

We have in this Cafe, an Inftance (tho' depending on another Principle) of the Truth of what was before difcours'd at Schol. Prop. 3. viz. Concerning Lines which are not parallel, appearing as Parallels.

For fince all the Points of the Lines PD, NE, appear in AP, BN, which are ftrictly parallel to one another ; 'tis evident that the two former Lines are feen as the two latter, that is, as parallel Lines. And how that is, we have demonftrated at Prop. 1, 2, 3 .

$$
\text { L E M. I. Fig. } 8 .
$$

If the Paraliels $\mathrm{LM}, \mathrm{GV}, \mathrm{HN}, \mathrm{er}^{\text {c }}$ c. in the Bafe of the Triangular Prifm ABLHMN, be produced at Liberty towards $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, σc. any Lines as AI, AK, drawn from the foiid Angle A, to any Points as I, K, in thofe Parallels, fhall neceffarily interfect the Lines NB, VB, running up from the Points N, Y, to the other folid Angle B.

DEMON.

[45]

DEMONSTRATION.

For the Line NR, ex.gr. being in the Plane of the Parallelogram ABHN; 'tis evident, that a Line drawn from A to a Point as I, in the Bafe HN, produced, Thall cut the oppofite Side $\mathbf{B N}$ in fome Point as e, by the way; fo in the Parallelogram ABGV, the Line AK, fhall cut BV, in $k_{;}$and fo of all the reft. Therefore, © ${ }^{\text {c }}$. Q.E.D.
L E M. II.

If an Eye were plac'd at A, it would project the Point I into e, or K into k; or any other Points in the parallel Lines $R N$, VQ, into fome Points of the Lines NO, VS, running up to the Angle B. And therefore, it would project the parallel Lines NR, VQ, MP, infinitely produced, into the Lines $\mathrm{NB}, \mathrm{VB}, \mathrm{MB}$.

PROP. IX. Fig. 8.

The Perfpectives, of all Lines which are parallel one to another, and not parallel to the ground Line, do run up into one and the fame Point in the Table.

This is the main and great Propofition in this Science, and is thus eafily and univerfally

[46]

verfally demonftrated, by the Help of the two foregoing Lemmata.

DEMONSRATION.

Suppofe the Parallels MP, VQ, NR, ${ }^{6}$. I fay, the Perfpectives of thefe fhall all run up into one and the fame Point. By Lemma i. the common Sections of all the Planes, AHR, AGQ, ALP, $\sigma \cdot c$. with the Plane CDFE, muft neceffarily meet one another in the folid Angle of the Prifm B.
By Lem. 2. the Plane CBDFVE is a Perfpective Table to the Eye plac'd at A, the other folid Angle of the fame Prifm; and therefore the common Sections of the aforefaid Planes, AHR, AGQ, ALP, \& c. with the Plane CDFE, will be the Perfpectives of the Parallels NR, VQ, MP, and therefore thefe Perfpectives muft neceffarily be the Lines NB, VB, MB, © c. all meeting in one and the fame Point B. R.E.D.
COROL. I.

From hence again appears a Reafon why in long Rooms and Walls, or Rows of Trees and Pillars, the Sides feem clofer one to another towards the farther End, then at the Parts nearer the Place of the Eye.

COROL.

[47]

COROL. II.

If any Object, as I, were removed out to the Horizon, the vifual Ray AI, would coincide with ABO, fo would all other vifual Rays coincide with each other in the fame Ray AB.
C OROL. III.

From hence it follows, that the Point to which the Perfpectives of any Parallels converge, is there where a Line from the Eye parallel to thofe Parallels, ftrikes the Table. For all the vifual Rayes coincide at laft in the Ray AB; which is the common Section or Side, of all the parallelogram Superficies ALOP, AGOQ, AHOR, © \because c.

Therefore fince (from the Conftruction of the Figure) AB is parallel to each of the infinite Lines in the Bafe ; the Confequence is clear.
C OROL. IV.

The Ray AB frikes the Table at right Angles, when the Lines NP, NR, © c. are perpendicular to the ground Line MN. But if MB, NR, σc_{y} cut the ground Line obliquely; the Angle ABC will fill equal

「 48]

equal PMN or RNE, erc. that is the Ray AB, will always make the fame Angle with the Line CBD in the Table (which we fuppofe parallel to MN) as the oblique Pa rallels themfelves, do with the Line MN.
COROL. V.

If the Plane MPNR be parallel to the Horizon ; 'tis plain that the Line CBD, will be that, which we call the Horizontal Line; whofe Elevation above the ground Plane, is juft equal to the Height of the Eye. And confequently, it will follow, that the Perfpectives of all Parallels, whether perpendicular or oblique to the ground Line, do run up to fome Points in the Horizontal Line. But if the Plane MPNR, be either elevated above, or deprefs'd below, the Horizontal Plane ; then the Point where Perfpectives of thefe Parallels will meet, will accordingly be found in the Table above or below that, which is commonly called the Horizontal Line.
C OROL. VI.

If the Parallels MP, VQ̀, NR, brc. be at right Angles to the Line $\mathrm{FE}_{\text {, }}$ then B , fhall be that, which we call the Point of

$$
\left[5^{1}\right]
$$

Sight; but if the faid Parallels be oblique to the Line FE, then B fhall be fonve Actidental Poins.

COROL. VII.

From what has been faid, appedrs the Method of finding out the Points, to which the Perfpectives of any Parallels, lying in the Plane of the Horizon, do converge upon the Table. Viz.

Drants a Line from the Foot of the Eyes Perpendicular, parallel to the Parallels propos'd, and fee where it cuts the Ground Line. From that Point carry up a Perpendicular, equal to the Height of the Eye. Where that Perpendicular interfetts the Horizontal Line, will be the Point fought.

Therefore, to deterrmine the Point of Sight, is only to let fall a Line from the Eye, perpendicularly to the Table.

COROL. VIII.

When the oblique Parallels, cut the Ground Line, at an Angle of 45°; then the Points of Difance, become the proper Accidental Points, to which the Perfpectives of of thofe Parallels converge.

COROL.

[52]

- COROL. IX.

By how much the more obliquely, any Parallels fall on the Ground Line, by fo much the farther, is the Point to which their Perfpectives converge, diftant in the Horizontal Line, from the Point of Sight.
C OROL. X.

If any Angle be made at the Eye, equal to the Angle contained under the Sides of any Poligon; the Leggs comprehending that Angle, will frike the Table in thofe Points, to which the Perfpectives of all Lines, parallel to the faid Sides, will converge. Thus in an Equilateral Triangle; ex.gr. Thofe Points will be determined by the Leggs of an Angle of 60° : In a Square, by an Angle of 90° : In a regular Pentagon, by one of 108°; and fo in every regular Pigure the accidental Points (to which the Perfpectives of all Lines parallel to the Sides of that Figure, converge) are marked out by Rayes, making an Angle at the Eye, equal to the Angle of the faid Poligon.

COROL.

[53]

C OROL: XI.

The Perfpectives of all oblique Paralles in the Horizontal Plane both below, and above the Eye, and in the two fide Planes, perpendicular to the former, will all concur in one and the fame Point. So that an infinite Parallelippid, dwindles in Perfpective, into a Pyramid, as a Parallelogramodoes into a Triangle, and a Cylinder into a Cone.

COROL. XII.

If the Right Line, which is the Eyes Diftance from the Table, be produced infinitely towards the Parts of the Eye; the fame converging Lines on the Table, will be the Perfpectives of the fame Parallels in the Ground Plane, to the Eye feated in any Point whatfoever, of that infinite Line.
And this folves, what fome have reckon'd a fort of Parados, in this Science, viz. That the fante Parallels foould be projected into the felf fame Linies on the Table, tho the Eye changes its Plate atd Diftance.

E2. SCHOL.

SCHOL.

Since the Bafe of the Prifm (Fig. 8.) may be as well any fort of Parallelogram, as a Rectangle; as alfo fince the two oppofite Triangular Planes, may be as well any way inclin'd, as Itand perpendicular to the Plane of the Bafe : It follows, that the Propofition, is by this Method univerfally demonftrated, with Refpect to any fort of Lines, drawn in Planes, which lie in any Manner of Pofition to the Table. For of what Species foever the Prifm be, provided it be but a Prifm, yet ftill the Lines MB, VB, NB, which-run up to one folid Angle B, will neceffarily be the Projections of the Lines MP, VQ, NR, to the Eye placed at the other Solid Angle A.
PROP. X.

The Perfpective of any vifble Point, is trats determin'd, by the Interjection of a Radial Line, (drawn from the Point of. Incidence) and a Line connecting the Exe's Diffance, fet off, in the Horizontal Line, with the Diffance of the Point feen laid off in the Ground Liue. (See Fig. 9.

[55]

CONSTRUCTION.

Let $\mathbf{C b n d}$ be the Table, the Eye at A , its Height $\mathrm{AG}=\mathrm{BH}$, the Diftance of the Point feen, D from the Ground Line $=\mathrm{ID}=\mathrm{IE}$, the Diftance of the Eye GH $=A B=B C$; the Radial BI drawn from the Point of Incidence I , to the Point B ; the Line CE connecting the Points C, E, cutting the Radial BI in L ; the Line $\mathrm{AD}_{\text {; }}$ drawn from A to the Point feen D, cutting the Table in the Point K.
; I fay that L is the Perfpective of D.
Draw CM parallei to BI , and $\mathrm{FI}=$ and parallel to GH; Join the Points GF, and Laftly draw AF.

DEMONSTRATION,

Since the vifual Ray AD, cuts the Tao ble in the Point K , ; 'tis plain from thence that K is the true Natural Perfpective of the Point D.

Alfo by Propofition IX, it appears, that K the Perfpective of D, muft needs be found in the Radial BI, drawn to the Point of Sight B, from the Point of Incidence I, 1 Gall now demonftrate, that the Point $L_{\text {coincides }}$ with K_{0} the natural Perfees Ative of the Point D_{F}

E
 The

$$
[56]
$$

The $\triangle^{1 s}$ DAF and DIK are Similar, for AF $\|{ }^{1} \mathrm{BI}$.
Therefore DF : 'AF:: DI:IK.
Alfo the $\triangle^{\text {ls }}$. CME and LIE are Similar, for $\mathrm{CM} \| \mathrm{BI}$.
Therefore ME: MC: : IE:IL.
Now becaufe $\mathrm{EI} \neq \mathrm{DI}$, therefore DI $+\mathrm{IF}=\mathrm{IE}+\mathrm{IF}=\mathrm{IB}+\mathrm{GH}=\mathrm{IB}+\mathrm{AB}$
$=\mathrm{IE}+\mathrm{AB}=\mathrm{BB}+\mathrm{CB}=\mathrm{IE}+\mathrm{MI}$, therefore $\mathrm{DF}=\mathrm{ME}$.
Again, $\mathrm{AF}=\mathrm{BI}=\mathrm{MC}$. So that the three firft Terms of the first Proportion, are refpectively equal to the threefifft of the latior, therefore the fourth -Terms dremafpectively equat, that is' KK IL. Therefore the Points K and Le eincide. Therefore the Perfpective of the Point D, is truly determin'dl By the linterection of the Line CE, with the Radial B I. Q E, D.

$$
C_{O} O L
$$

Hence it follows, that the Perfpective of ahy Point, willalfo be determindo by the mutiual Interfection, of the L ines drawn from the two Points of Difidece, to thole Pönts in the'Ground Eme, where the Digance of the Polite fefy is laidon That
 from the Point of Sight, in the Horizontal Line;

$$
[57]
$$

Line; and the Diftance of the wifible Point from the Table, both ways, from the Point of Incidence, in the Ground Line, and connest the Points above and below Aldernately, with right Lines; fo Shall the Interfection of there two Lines in the Ta. ble, be the true Perfective of the Point given.

For it may be demonstrated by the fame Steps, as above, that each of there Lines of Diftance, will interfect the common Radial (drawn from the Point of Incidence) in one and the fame Point. Therefore, orc.
PROP. XI.

Any Portion of a direct Line, contiguous to the Table, is to its PerSpective, as the Sum of its Length, and the Eyes Diftance from the Table, is to the Length of the whole correspondent Radial.

CONSTRUCTION.

Let the Diftance propofed be TM. (See Fig. 10.) The Perfective of the Point M is at E , forme where in the Radial TF, drawn from T the Point of Incidence, by Proptif Draw GY parallel to AB, and proIX duce MT to cut GY in V. Then draw KV , from the Eye at K .
Et DEMON:

DEMONSTRATION.

Becaufe GY || AB, and VT ||Gs, therefore $G V=S T$, and fince $K G=F S$, and the Angle KGS $=$ FST , being both Lis, therefore $\mathrm{FT}=\mathrm{KV}$. Farther fince VT $=\mathrm{GS}$, $=\mathrm{KF}$, therefore $\mathrm{VT}=\mathrm{KF}$. Therefore the Figure KFVT is a Parallelogran, therefore FT $\|$ KV. Therefore the $\triangle^{\text {is }}$ KVM and ETM are Similar ;
Therefore TM: TE::VM:VK, but VK $=\mathrm{TF}$,
Therefore TM:TE: :VM: TR. Q.E.D.
C O R O L. I.

When the Diftance TM, coincides with SO, which runs up to the Foot of the Eyes perpendicular; then the Rule will be thus: As the Difance feen, is to its PerJpective, Sa is tbe Sum of that Diftance, and the Eye's Diftance from the Table, to the Height of the Eyc. For now the Length of the Radial, coincides with the Height of the Eye.

COROL.

$$
\text { [} 59 \text {] }
$$

C O R O L. II.

Equal Portions being taken, of feveral direct Lines; that which paffes thro the Foot of the Eyes perpendicular, will have its perfpective Contraction, of all the fbortef.
COROL. IIL.

Hence may be computed the Proportion, between the Perfpectives of any Part of a direct Line contiguous to the Table, to the Eye plac'd, either at different Heights or different Diftances, or different Heights and Diftances both together; viz. By Corol. I. when the Line paffes through the Foot of the Eye's Perpendicular; and by the Prop. it felf, when it paffes through any other Point.

C O R OL. IV.

And becaufe the Perfpective of any Part of a direct Line, not contiguous to the Table, is equal to the Difference of the Perfpectives of two Parts of the fame direct Line, which are contiguous to the Table; therefore, by what has been faid, we can alfo determine the Proportion of the Perfeectives,

[60]

fpectives, of any Segment of a direct Line not contiguous to the Table, to the Eye either at different Heights, or Diftances, or both together. But of this, fee more by and by, at Prop. XIII.

PROPOSITION XII.

If any Line be parallel to the Ground Line, its Perfpective in the Table, Jball be parallel to the Ground Line alfo.

CONSTRUCTION.

Let the Line MN be parallel AB, (See Fig. 10.) the Ground Line; and drawing from the Eye at K, the Lines KN, KM, ket us conceive the Plane of Rayes KNM^{2}, whofe common Section with the Plane of the Table, fuppofe to be DE, which is therefore the Perfipective of MN (by Def. XX.) and muft now be fhewn to be parallel to AB . Upon $\mathbf{M N}$, erect the Plane MNXZ, perpendicular to the Ground Plane.

DEMONSTRATION.

F Becaure the Plane NMXZ is perpendicular to the Ground Plane, therefore it is parallel to the Plane of the Table. And becaufe the Plane KMN, cuts the Table and

[6I]

and this Plane NMXZ, therefore the common Sections thall be parallel.

But thele common Sections are MN and DE. Therefore MN and DE are paralyel ; but MN is parallel to AB (by the Hypon thefis) therefore DE is alfo parallel to AB . R.E.D.
C O R O L. : I.

Therefore if MN and HL are two Lines parallel to the Ground Line, their Perfpectives DE and PR, fhall be parallel to one another in the Table.

COROLIL

If any Line NM parallet to the ground Line, be bifected in O, a Ray drawn from the Eye to the Point of Bifection, thall bifect the Perfpective of the faid Line DE , in C,

For the Triangles KCE and KOM are Şimilar. Therefore OM : CE : : KG: KC. Again, the Triangles KON and KCD are Similar.

Therefore ON :DC : $\mathrm{KO}: \mathbf{K C}$.
Therefore OM: CE: : ON:DC.But $Q M=\mathrm{ON}_{2}$ therefore $\mathrm{CE}_{\mathrm{F}}^{\mathrm{T}} \mathrm{DC}$.
COROL

$$
[62]
$$

C OROLL. HI.

The fame things being fuppofed as before, I fay the Line NM is to its PerfpeCtive, as theDiftance between theFoot of the Eye's Perpendicular and the Line NM, to the Diftance of the Eye from the Table.
For the $\Delta^{\text {les }} \mathrm{K} D E$ and $\mathrm{K} N \mathrm{M}$ are Similar, therefore $\mathrm{NM}: \mathrm{DE}:$: $\mathrm{KO}: \mathrm{KC}$.

Again, the $\triangle^{\text {les }} \mathrm{KGO}$ and CSO are: Similar;
Therefore KO :KC :: GO : GS. Therefore NM:DE: GO'GS, but KF $=$ GS, Therefore NM \#DE:4GO:KF. Q. E.D.
PROP. XIII;

The Per/pectives of all Lines perpendicular to the ground Plane, will, if produced in. the Table, be perpendiaular to the ground Lind.
CONSTRUCT: (Figir.)

Let CD be a Perpendicular to the ground Plane; and let the érect plane KCSDT, paffing thro' the Line CD, be parallel. to the Table, From thẹ Points C, D_{1}

C, D, draw AC, AD, to the Eye at A. And let the Triangular Plane of Rayes, ACD, make EM for its common SeCtion with the Plane of the Table.

DEMONSRATION.

Becaufe C̀D and EM, are the common Sections of two parallel Planes by a tbird Plane, they fhall be parallel to one another : Therefore EM if produced, thall be perpendicular to the ground Line HLP. The lame may be demonftrated of NO the Perfpective of 1 K . Therefore, $\forall c$. Q.E.D.
COROL I.

Hence the Perfpectives of all Perpendiculars to the ground Plane, are parallel one to another in the Table.
COROL. II.

The Perpendicular CD, is to its Perfpective EM, as the Sum of the Diftances of theEye, and of that Perpendicular from the Table, to the Diftance of the Eye. from the Table; or, as the Diffance between the Foot of the Eyes Perpendicular, and the Perpendicular feen, to the Di^{-} flance of the Eye from the Table.

[64]

For from Similar \triangle^{15} ACD and AEM, 'tis DC : ME : : AD : AM.

And from Similar $\triangle^{1 s}$ ADF and MDL, it is AD: AM::FD:FL.

Therefore DC:ME::FD:FL. Q.E.D.

COROL. III.

If two or more Perpendiculars to the Ground Plane, which are of equal Height, do alfo ftand at equal Diftances from the Table; their Perfpectives fhall be equal.
Let the Perpendicular DC =Perpendicular IK: and the Diftance $L D=I H$.

And let ME be the Perfpective of CD, and NO the Perfpective of KI. It was Shewn in the Propofition, that CD :ME:: FD:: LD, therefore for the fame Reafon, IK: NO: : GI : HI. But HI $=$ LD (by the Hypothefis) and fince $\mathrm{FL}=\mathrm{AB}=$ GH , therefore $\mathrm{GI}=\mathrm{FD}$, therefore CD : ME: : IK: NO; but $C D=I K$, therefore $\mathrm{EM}=\mathrm{NO} . Q . E$.

COROL. IV.

Any Perpendicular to the ground Plane, is to its Perfpective; as a Parallel to the growndd Line, at the fame Diftance from the Table, is to its Perfpective. Becaufe they are on both Sides proportional to the Lines

FD

[65]

FD and FL; as appears by comparing Cor. II. of this Propofition, with Cor. III. of Propofition XII.

And therefore, if the Perpendicular and the Parallel, are equal in the Length, their PerpeCtives will be equal alfo.

COROL. V.

The Diftance of the Object and Eye from the Table continuing; the Perfpectives of the fame Perpendicular, are equal, whether the Eye be plac'd at a lefs or a greater Height.

The Object PG (Fig. 12) the Table TK, the Eye at the two different Elevations \mathbf{A} and S, in the fame Perpendicular AC. Draw the Rayes AP, AG, SP, SG, interfecting the Table in the Points q, o, p, e.

Now, PG : qo :: AG : Ao (Similar $\triangle^{1 \text { s }}$, APG, Aqo): : CG:CK (becaufe AC parallel TK).

Again, PG : pe:: SG:Se (Similar $\triangle^{\text {is }}$, SPG, Spe) :: CG:CK (becaufe of the fame Parallels.)

Therefore PG: qo:: PG:pe, therefore $\mathrm{qo}=\mathrm{pe}$. Q.E.D.

COROL.

$$
\begin{gathered}
{[66]} \\
\text { cor o } \mathrm{c} \text { VI. }
\end{gathered}
$$

The Height of the Eye continuing, as alfo the Diffance between the Object and Table: The Perfpectives of the fame Petpendicular, to the Eye at two Several Difances, are in the Ratio compounded, of the dizect Ratio of the Diftances of the Eye from the Table, and the Reciprocal, of the Diftances between the Object and the Eye.

The Object PG, as before, its PerfpeCtives to the Eye at A and D, qo, and $\mathbf{g} \mathbf{b}$, refpectively ; determin'd by the Interfections of the Rayes AP, AG, DP; DG, with the Table TK.

$$
\begin{aligned}
& \text { 'Tis, PG : qo :: AG : AO (Similar } \triangle^{\text {ls }} \text {, } \\
& \text { APG, Aqo) } \\
& \text { AG:Ao: : CG: } \mathrm{CK} \text {, } \\
& \text { Therefore PG:qo::CG:CK. } \\
& \text { Again, PG:gb:: DG:Db (Simis } \\
& \text { lar } \triangle^{\text {ls }} \text {, DPG, Dbg) } \\
& \text { DG:Db::EG:EK, } \\
& \text { Therefore PG:gb:: EG:EK. } \\
& \because \mathrm{qo}: \mathrm{gb}:: \frac{\mathrm{PG} \times \mathrm{CK}}{\mathrm{CG}}: \frac{\mathrm{PG} \times \mathrm{EK}}{\mathrm{E}}:
\end{aligned}
$$

$\frac{C K}{C G}: \frac{\mathrm{EK}}{\mathrm{EG}}:: C K \times \mathrm{EG}: E K \times C G$.
\& E.D.
From

[67]

From hence it follows, that the Perfpective; , to the remoter Eye, is greater than that to the nearer. For fince $\mathrm{EG}=\mathrm{EK}+\mathrm{KG}$, and $C G=C K+K G$, therefore $\mathrm{qo}: \mathrm{gb}$ $::$ CK \times EK + CK \times KG : EK \times CK + EK $\times \mathrm{KG}$; but EK $>\mathrm{CK}$, therefore EK $\times K G>C K \times K G, \therefore E K \times K G+E K X$ $\mathrm{CK}>\mathrm{CK} \times \mathrm{KG}+\mathrm{EK} \times \mathrm{CK}_{,} \therefore \mathrm{gb}>\mathrm{qo}$ 。 R.E. D.

SCHOL.

By what has been demonftrated at Prop.II. and (with their refpective Corollaries) may be determin'd, whatever relates to the Proportion between the Perfpectives of any direct Lineş, and of any Lines Perpendicular'to the ground Plane ;"whether they be contiguous to the ground Line, and to the ground Plane, or not contiguous, and that for all the various Cafes, of different Heights.and Diftances of the Eye. 'Twould be tootedious a Work, to go through them all here. 'Tis fufficient to have fhewn the way, both by Precepts and Examples, how to proceed in any of them that may occur. But for a farther Help, this prefent Figure may be confidered, wherein the Eye is plac'd at feveral Elevations and Diftances from the Table, and the Perfpectives of both Sorts of Lines mention'd, are diftinctly

[68]

reprefented, to put the Reader, the more eafily, into the Way of arguing out any of thefe Particulars. Thus eg. gr. the Perfpective of the direct Line GH, not contiguous to the Table, is the fame with the Perfpective of the Line GP, perpendicular to the Ground Plane, the Eye being, in either Cafe at A. And fo of the reft.
PROP. XIV. .

If any direct Line be divided into any Number of equal Parts, the Perfpectives of thofe equal Parts fball be unequal.

CONSTRUCT. (See Fig. 12.)

Let the direct Line be DF, the two equal Parts BG, GF, their Perfpectives NL, and LM, determin'd by the Interfeation of the Rayes AB, AG, AF, with the Line SD, drawn from the Point of Incidence D , to the Point of Sight S. From the Point N, draw NO, parallel to the Line DF, and from the Point C, draw RC, parallel to AF.

DEMONSTRATION.

The $\triangle^{\text {ts }}$ ABG and ANC; AGF, ACO are Similar, therefore AG:AC:: BG: NC.

Alfo

[69]

Alfo for the fame Reafon, AG:AC.: GF : CO, therefore BG: GF : : NC : CO, but $\mathrm{BG}=\mathrm{GF}$, therefore $\mathrm{NC}=\mathrm{CO}$. Again, the $\Delta^{1 s}$ NMO, NRC are Similar, therefore NC:CO: : NR:RM, therefore NR=RM.

In the $\triangle^{1} \mathrm{AGB}$, the $\angle^{1} \mathrm{AGB}$ is $>$ than the $\angle^{1} \mathrm{AFB}$, but MON $=\mathrm{AFB}$, and LCN $=A G B$, therefore LCN $>$ MON. Now RC, parallel MO, therefore RCN= MON, therefore LCN $>\mathrm{RCN}$, therefore LN $>$ RN. But RN $=$ RM, therefore LN $>$ RM, therefore NL>LM.
Q.E.D.

COROL.

Hence it follows, that the Divifions of any Radial Line, in the Perfpective Table, which anfwer to any equal Divifions of a direct Line; are not only unequal: But alfo that the Parts grow lefs and lefs, as they approach nearer in that Radial, to the Point of Sight.

PROP. XV.

If a Line be inclined, by any'Angle whatfoever, to a Tranfverfe Line in the ground Plane; its Perfpective ןball make the fame Angle with the Perfjective of that F 2

Tramf:

Tranfverfe Line in the Tables (See Fig. 13.)

CONSTRUCTION.

Let the inclin'd Line be AC making any $\angle 1$ as ACB, with the Tranfverfe Line BC; from any Point as A, in the Line AC, let fall the Perpendicular AB. From the Eye at R, draw the Rayes AR, RC, RB, interfecting the Table in the Points a, b, c, which are therefore the Perfpectives of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

DEMONSTRATION.

Since BC is parallel to the ground Line NS (by Hypoth.) therefore $b c$ parallel NS by Prop: XII. Farther, fince AB perpendicular BC, therefore alfo by Prop. XIII. ${ }_{a} b$ will be perpendicular $b c$; fo that the $\triangle^{\text {ls }} \mathrm{ABC}_{\text {; }}$ abc are Rectangular at B , and b. Now by Corol.IV. Pro. XIII. it appears that $\mathrm{AB}: \mathrm{BC}:: a b: b c$, becaufe both are in Proportion of FB: Fn. Therefore the $\triangle^{1 s}$ ABC and $a b c$ are Similar, having their Sides about the equal Angles proportional. Therefore the Lle $a b c=L^{1 \mathrm{e}} \mathrm{ABC}$. Q.E.B.

[71]

PROP. XVI.

If in the ground Plane, there be dramn any Number of Parallels to the ground Line, being all of the fame Bignefs; and at the Extremities of them be ereETed Perpendicylars to the ground Plane all of the fame Height; the Perfpectives of thefe Paral. lels and Perpendiculars, fball divide all the Radials, drapn through the Extremities of the Said Perfpectives, in the fame Proportion.

CONSTRUCT. (Fig. 14.)

Let the Parallels to the ground Line, be $\mathrm{OH}, \mathrm{MI}, \mathrm{NK}$, included between the fame Parallels EN, PK, and the refpective Perpendiculars $\mathrm{HR}, \mathrm{OI}, \mathrm{PK}$, whofe Tops are terminated in the Line RP, parallel to PK. Produce the Line RP till it cuts the Table in d; and draw the Radial Cd. Let $\mathbf{S}, \mathrm{V}, \mathrm{W}$, be the Perfpectives of $\mathrm{N}, \mathrm{M}, \mathbf{O}$, and $\mathrm{m}, \mathrm{n}, \mathrm{o}$, thofe of $\mathrm{K}, \mathrm{I}, \mathrm{H}$, and $\mathrm{X} ; \mathbf{Y}, \mathrm{Z}$ thofe of P, Q, R, Laftly, draw the Radials CSE, CmF, CXd.

$$
\text { F } 3 \quad \because \quad \text { By }
$$

DEMONSTRAT.

By Prop. XII. Cor. I. Sm, VN, Wo, are Parallels. Therefore SV:VW:: mn:no. Again, by Prop. XIII. Cor. I. Xm, Yn, Zo , are Parallels, therefore $\mathrm{mn}:$ no :: XY : YZ ; therefore $\mathrm{SV}: \mathrm{VW}:: \mathrm{XY}: \mathrm{YZ}$. Therefore all the Radials are cut proportionally. R.E.D.

The Practice of PERSPECTIVE.

The Practice of Perfpective is Twofold, Direct and Inverfe.

The direct Method, is that, by which we trace out the Appearance of any given Object, upon the Plane of the Table.

The Inverfe, that, by which from the Perfective given, we go back to the Object it felf; and fo by a fort of Lizear Inveftigation, fhew the Work to be rightly done. This is very ufeful and neceffary in fome Cafes, where a Doubt may arife concerning the Exactnefs of an Operation; and in any Cafe, 'tis very pleafant, thus to bring what is done to a regular Examen.

The Geometricians have their Synthefis and Analyfis, or Compofitive and Refolutive Methods; and the Analyfs, their Direct and Inverfe Method of Fluxions. And as 'tis

[73]

'tis a fure Proof, that a Fluent is rightly determin'd, when the Fluxion thereof is exactly equal, to the Fluxion at firft propofed; fo 'tis certain likewife, that the Work is right in Perppetive, when by a fair Procefs from what is done, we can come back to the true original Object it felf. And the Parallel would be exact in all Refpects, if we did but fhift Names, and call that the Inverfe, which before we calldthe Direct Part of the Practice of Perfpective: We thall exemplifie both thefe Branches diftinctly. But to proceed.

Hitherto we have reprefented the Perfpective Table as ftanding fidemays, with Refpect to the Eye of the Perfon that looks on the Page, where the Figures are drawn. And 'tis certain that this ferves, to give the cleareft Idea, of the Demonftrations, of the Propofitions, that are advanced in this Science. But now it will be neceffary to reprefent the Table after another manner; that is foreright or direct to the Eye of the Reader: So that whereas, before, it was imagin'd to ftand at Right Angles to the Plane of the Page, now we are to conceive it as lying in that Plane ; this fort of Reprefentation, being the moft commodious for Operation and Practice.

[74]

I fhall begin with the first Branch of the Practice of Perfpective, viz. How to delineate the true Scenographical Appearance of any Object given; or how to proceed from, the Object to the Perfpective; which is the direct Method.

And in order to the making all things here as eafie as may be, I premife, that the Method of determining the Perfpective of a Point, being thewn at Prop. X, and the Corollary thereof; the Perfpectives of all Linesand Figures, are from thence likewife determinable.

The Perfpective of a Right Line, is had, by finding, and joining the Perfpectives, of its Extremities.

The Perfpective of a Rectilineal Plane Figure, is had by determining the Perfpectives of all its Sides.

The Perfpectives of Crooked Lines, or Crooked. lin'd Plane Figures, are determin'd (at leaft exactly enough for Practice) by carrying a Crooked Line, thro' the Perfpectives of a fufficient Number of Points.

The Perfpective of a Solid, whether Rectiliveal or Curvilineal, is determin'd by finding firft, the Perfpective of the Bafe, and then fetting off the Perfpectives of the Heights, from their proper Points of Seat in the Bafe, and joining the Extremities.

To go on a little farther, with thefe General Directions; let it be obferv'd, that the Perfpectives of all Lines, which cut the Ground Line, at 'Right Angles are to be carry'd up to the Point of Sight; or if at oblique Angles, then to fome Accidental Point, determin'd according to Carol. VI. and Schol. Prop. IX.

And in General, that the Perfpectives of all Lines parallel to each other, do run up into one and the fame Point, in the Table; by the aforefaid Prop. IX.

That the Perfpectives, of all Lines parallel to the Section or Ground Line, are to be drawn parallel toit, upon the Table; by Prop. XII.

That the Perfpectives of all Lines perpendicular to the Ground Plane, are to be drawn in the Table, perpendicular to the Ground Line ; by Prop. XIII.

That Lines inclined in the ground Plane, are to be drawn with the fame Angle of Inclination, in the Table; by Prop. XV.

That the Parts of the Perfpective become unequal, and Jorten more and more, the nearer they come towards the Point of Sight; by Prop. XIV.

Thefe Directions relate more fpecially and immediately to the Practice, though thofe which flow from the reft of the Propofitions and their Corollaries, are all of them fuch,

$$
\text { [} 76 \text {] }
$$

fuch, as will be ufeful in fome Cafe or other this Way. Thus (for Example) it may be of great Ufe to an Artift that defires to be exact, to confider what is fhewn at Prop. XI, XII, XIII. with their Corollaries, about the Augmentation or Diminution of the Perfpective, upon the various Heights and Diftances of the Eye : And to know in what Proportion of Magnitude, the Perfpectives of parallel and perpendicular Lines, are to be drawn upon the Table, to thofe Lines themfelves.

And therefore, as thefe Ufes will be eafily found out and made, by thofe who Thall take the right Courfe to join good Knowledge in Geometry, to this Part of Opticks: So I fhall infift no farther upon that Matter, but come to propofe fome Problems, fuch as may ferve to exercife the Rules before demonifrated.

And for the more effectual attaining this End, we Thall Shew how they are to be done: 1. By the more common and expeditious way of a Point of Sight, and a Poist of Diftance ; and how, 2. By the Help of the Accidental Points.

PROF.

[77]

PROP. XVII. PROB. I.

 (Fig. 15. No. 1.)To find the Seat of a Point in the Per Jpective Table.

By a Point of Sight and Diftance.

Let the Eye be A, the Point of Sight B, the Point of Diffance D, the Point whofe Perfpective, or Seat in the Table, is required, F. The Line FD is perpendicular to the ground Line GR, wherein is taken $\mathrm{ED}=\mathrm{DF}$.

Then the Radial DB drawn from the Point of Incidence D , cuts the Line of Diftance CE in f, which is the Seat of the given Point F , in the Perfpective Table.

> By the AccidentalPeints. (Fig. 15. No. 2 , and 3.)

The former of thefe Figures will fhew the Reafon and Demonftration of this Way of practifing, by the Accidental Points, the Table being reprefented fidepalys ; and the letter, the more ready and expeditious Way of Practice it felf, the View being here foreright. And in both, the feveral correfpondent Points are mark'd exactly with the fame Letters, that the Reader might the better underftand the Agreement betwixt them.

[78]

Let the Eye be at A, its Height AB, the Plane of the Table CDEF, the ground Line EF.

The Difference between thefe Figures, is, that whereas the Object IKL at ${ }^{\mathrm{N}}{ }^{\mathrm{o}} .2$. is reprefented very diftinctly as lying in the ground Plane, and is not at all confounded, with its Image in the Table OPQ; at $\mathrm{N}^{\circ}{ }^{\circ}$ 3. the Object ikl feems to be confounded with its Perfpective opq, although they are not to be conceived, as both lying in the Jame Plane, but ikl out behind in the ground Plane, and opq in the Plane of the Table, erected perpendicularly upon the Line of ; the feeming Coincidence of the Planes, arifing from the prefent Pofition and View.

Let I be a Point given in the ground Plane, (Fig. $15 . \mathrm{N}^{\mathrm{o}} .2,3$.) whofe Seat in the Table is to be determin'd.

From the given Point produce any two Lines, at Liberty, to cut the ground Line, as IN, IM.

From B the Foot of the Eye's Perpendicular, draw BF, BH, $\|$ to IM; IN, refpeCtively. At the Points F, H, (in the ground Line) erect the Perpendiculars FD, HG, each equal to $A B$.

Join thefe Points D, G, with the Points M, N, refpectively, and where the Lines DM, GN, interfect, as in O , will be the

Seat of the Point I in the Table. (This being demonftrated at Pro. IX, and its Corollaries, I fhall not need to offer any thing of the Reafon of it here.)

PROP. XVIII. PROB. II. (Fig. 16.)

To find the ScenographickContraction of a Right Line, draton in any Paftion to the ground Line.

By a Point of Sight and Diftance.
The Points A, B, C, asbefore. The Line given IH; and from the Points I, H, the Perpendiculars EI, H G, to which DE and FG, in the Ground Line GD, are refpeetively equal. From the Points of Incio dence EG are drawn the Radials EC, GC, which are interfected by the Lines of Di_{i} ftance BD, BF, in the Points i, b, which Points are the Perfpectives of I, H, and therefore being joyned with a ftrait Line, give ib for the Perfpective of the Line IH, which was fought.

Were the given Line parallel to the ground Line, as ex. gr. IK; its Perfpective is determin'd with lefs. Trouble ftill. For having found the Seat of the Point I in i, we need only draw from thence a Line parallel to DG, which cuts the other Radial CG in k, and fo makes ik for the Perfpective of IK.

There

[80]

There is no Need to add any thing about the Perfpective of a Line perpendicular to the ground Line. The Figure it felf, fufficientiy fhews that Matter; as ex. gr. in the Lines EI and GK, whofe Perfpectives are Ei and GK.

To do the fame by the Accidental Points:
I. If it be an Infinite Right Line, whofe ScenographickContraction we would have, as ex.gr. MK, infinitely produced towards K , and cutting the Table in M (Fig. 15 . $\mathrm{N}^{\circ} .2$, and 3.) we have nothing to do, but to draw $\mathrm{BF} \|$ to MK, and having erected FD perpendicular to FE , and $=$ $A B$, to join the Points D and M : So is DM the Perfective of the infinite Line MK.
2. If a Finite Line, as IM, and contiguous to the Table; we need only draw any other Line at Liberty, as NI, thro' the Point I the Extremity thereof; and then determine (by the laft Prob.) O, the Seat of I, in the Table : For then joining the Points M, O , that Line is the Perfpective Contracion of IM.
3. If a Finite Line, and not contiguous to the Table, as $\mathrm{LI}_{\text {; }}$ this may be done two feveral Ways:

\author{

1. By
}

[81]

1. By Two Accidental Points.

This is done by drawing two Lines at Liberty thro' the Extremities of the given Line; as LK, KI, to cut the Ground Line in R and M , and producing LI it felf, to cut the ground Line in \mathbf{N}; then having determin'd C, D, the proper accidental Points, to which the faid Lines run up in the Table, as alfo G, the Point to which the Line LI; infinitely produced, rues up; draw the Lines CR, DM, GN : For then CR and DM, do cut off from the Line GN, a Segment OP, which is the Scenographick Contraction of LI fought.
2. By One Accidental Point only.

From the Extremities L, I, draw two Lines: paratiel to each other, till they cut the ground Line; and by what has beem fhew'd before, find the proper accidental Point, to which thofe Parallels converge on the Table.

Then having (as: before) produced LI to the ground Line in N, and found G the proper,accidental Point, tawhich is runs up in the Table. If ewo Einesare drawn from the Point, to which the aforefaid Parallels converge on the Table, to the Points where they cut the ground Line; thef

$$
[82]
$$

will cut off from the Lime NG, the true Perfpective of LI.

PROB. III.

To reprefent any given Angle in PerfipeEtive. (Fig. $\left.15 . \mathbf{N}^{\circ} .1,2,3.\right)$

This is fo plain and eafie an Operation, after what has been faid about Points and Lines; that there ought to be but few Words, made about it. Ex. gr. Suppofe the Angle kli (Fig. 15. No.3.) were given. Having produced the containing Sides $l k$, l_{i}, to the ground Line in r, n, and carry'd Lines from b the Foot of the Eye's perpendicular, parallel to them refpectively, wiz. be, bh, and erected the Perpendiculars, ec, $h g=a b$, and laftly joined the Points c and r, g and n with right Lines: I fay thofe Lines cr, gn^{2}, form an Angle cgp, or npr, equal in Scenographick Reprefentation, to the Angle kli.
P R O B. IV. (Fig. 18.)

To find the Perfpective of a Line, Perpendicular, to the ground Plane.

This Problem is abfolutely neceffary, in order to the fetting any fort of Solid in

Perfective;

[83]

Perfpettive; and therefore ought to be diligently explain'd.

Let the Perpendicular given be NM, its Seat in the ground Plane I, its Diftance from the Table IB, the Height $\mathrm{OB}=\mathrm{NM}$, fet off in the Table from the Point of Incidence B. The Lines OA, BA, Radials carried from the Points O, B. In the Radial BA, the Point C, is the perfpective of I, the Point of Seat. From C is drawn CD, parallel to OB, terminated in D by the Radial OA. The Line CD is the Perfpective of NM.

Or thus: From any Point in the ground Line, as E, fet off the Perpendicular EF $=\mathrm{BO}=\mathrm{NM}$, and having determin'd the Point C (as before) draw CG parallel to the ground Line, to cut EA in G, then will GH perpendicular to the Ground Line, terminated by the Line FA, be the PerfipeEtive fought. Or (which is the fame thing) GH and CD will be equal to one another.

For $\mathrm{AB}: \mathrm{AC}:: \mathrm{OB}: D C$, Similar $\triangle^{1 \mathrm{~s}}$ $A O B, D O C$, and FE: HG: : AE : AG, Similar \triangle^{15}, AFE, AHG, and AE : AG:: AB : AC, Similar $\triangle^{1 \mathrm{~s}} \mathrm{ABE}, \mathrm{ACG}$,
\therefore FE: HG:: AB:AC,
\therefore FE:HG::OB:DC,
ButFE=OB, $\therefore \mathrm{HG}=\mathrm{DC}$,

$$
\text { [} 84]
$$

And it may be much more convenient fometimes, thus to find the Perfpective of an upright Line, apart froms the rest of the Perpective, and afterwards transfer it to its own proper Place in the Perfeetive, then to fet it off there at firft.

For when the Cafe is fuch, that a great many Perpendiculars are to be carry'd up from the Perfpectives of their feveral Points of Seat in the Figure; by the Multiplicity of Lines, the whole will be apt to be ren: dred confufed.

If it were required to determine the Perfpective, of a Line, any way inclin'd to the ground Plane; it's readily done thus.
Let fall a Perpendicular from the Top of the inclin'd Line, to the ground Plane. Find the Perfpective of that Perpendicular; as alfo the Perfpective Seat of the Foot of the inclin'd Line.

Draw a Line from the Top of the aforefaid Perfpective Height, to the Seat of the Foot of the given inclin'd Line, which will be the Peripective fought.

[85]

PROP. XXI. PROB. V. (Fig. 19.)

To find the Perrpective of a Triangle, in amy Poftion to the Table.

> "By a Point of Sight and Difance.

Let KLM be the Triangle propos'd. KE, LH, IM, are Perpendiculars from the Angles, to the ground Line; and from the Points E, H, I, are drawn the Radials EB, HB' and IB. The Perpendicular's KE, \&rc. laid off in the Ground Line, give the Points D, F, G, the Lines drawn to which from C, interfecting the Radials in k, l, m, determine the Perfpective of the Triangle KLM.

By the Accidental Points.

Let the Triangle be KIL (Fig. $15 . \mathrm{N}^{0}$. 2,3.) produce the Sides, to cut the ground Line in $\mathrm{R}, \mathrm{N}, \mathrm{M}$, and then from B , drawing Parallels to them, in E, H, F, ereet the Perpendiculars EC, HG, F D, and join the Points $\mathbf{C}, \mathrm{G}, \mathrm{D}$, with $\mathrm{R}, \mathrm{N}, \mathrm{M}$, refpectively: So have we by the InterfeCtions of thefe Lines, the Triangle OPQ in the Table, for the Perfpective of IKL.

[86]

After this Inftance, I fhall not need to illuftrate the Method of drawing Pieces of Perfective, by the Help of the Accidental Points, in any other Figures whatfoever; unlefs perhaps where 'tis nearer and more expeditious, to work that way than the other.

P R O P. XXII. P R O B.VI. (Fig. 20.)

To reprefent in Perfpective, a Square, divided into feveral little Squares; one Side being parallel to the ground Line.
Let the Square be AK GD. Let AY, ZH, In, qK , Perpendiculars to the ground Line, in which the Diftances being laid off, mark out the Points $\mathbf{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{V}, \mathrm{W}, \mathbf{X}$. Let the Lines $\mathrm{YO}, \mathrm{ZO}, \mathrm{nO}, \mathrm{qO}$, be Radials. The Lines PQ, PR, ${ }^{6} c$ c. carry'd from the Point of Difance C , interfect the Radial Oq , in g, m, l, k, from whence drawing $d g, m e, l b$, $k a$, parallel to QR , we have the defir'd Di vifions in Perfpective.

PROP. XXIII. PROB.VII. (Fig. 21.) To do the fame whex one Angle of the Square is turned to the Table.

This is moft conveniently done, by the Help of the Accidental Points.

The

[87]

The Lines of Inciaence being drawn, and the Diftances laid off in the Ground Line (as ufual) let nSWZ be the perfpective outlines of the Square MFNI. The Accidental Points are E and C, the Lines AE and AC, being parallel to MF and FI, by Cor. X. Prop. IX. Let the Points $\mathbf{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, be the Perfpectives of $\mathrm{I}, \mathrm{H}, \mathrm{G}, \mathrm{F}$. Then laying a Ruler thro' them and the Point E, mark out the Points s, q, r, n, which joyned with $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, will divide the Sides nS, ZW. So likewife, the Points n, o, p, Z, being found, a Ruler laid over them and the Point C , will divide the other two Sides of the Perfpective, $n \boldsymbol{n}$, SW. And the Interfections of thefe crofs Lines, will determine the Perfpective of the little Squares, in the Original.

PROP. XXIV. PROB. VIII.

To fet any Recililineal Plane Figure, whatfoever, mbether Regular, or Irregular, in Par.: Spective.

Find by the Rules afore-given, the Seats of the feveral Angular Points of the Poligon given, in the Perfpetive Table. Thefe Points joyn'd with Right Lines, will give the Perfpective of the Figure propos'd.

$$
\text { G. } 3 \quad \text { PROB. }
$$

[

PR OP. XXV. PROB. IX. (Fig. 22.)
To fet any upright Prifm, or Pyramid in Perfpective.

For a Prifm.

Let the Bafe be ABCDE, whofe Side $A B$ is parallel to the Ground Line, and the Height NO. By the foregoing Rules, find the Perfpective of the Bafe, which let be FGHIK, having drawn a Line from 0 , any Point in the ground Line, to L the Point of Sight; erect the Perpendicular NO equal to the Height of the Prifm; and join NL. At the Points F,G,H,I,K, a Ruler being laid parallel to the ground Line OZ. Interfects the Line LO, in the Points g, h, i, from whence drawing $g R, h Q,{ }_{i P}$ parallel to NO; thefe Thall be (by Prop.IV:) the perfpective Heights of the Prifm at thofe feveral Points. Whére note, that there are but three different Heights in all, for thofe that are to be raifed upon K and I, will be equal one to another, fo likewife with thofe at F and H ; tho' lefs than the former. Lafly, that at G, will be the leaft of all.
The Reafon of thisisis, becaure the Side the Pentagon AB is tuppofed to be parallel to the ground Line. So that now laying down the perfpective Plane or Bafe FGHIK,
in a Place apart by it felf; upon KI erect the Perpendiculars KP, IT, equal to the Perpendicular iP, and on the Points F, H, ereat FQ , HS equal to $\mathrm{h} Q$; and Laftly, from G erect $G R=g R$, and join the Points PQRST, fo you have the Perfpeetive of the whole Solid.

For a Prramid.

Let the Bafe, as before, be ABCDE, the Height NO, and W the Center of the Bafe.

Having drawn the Perfpective Plan FGHIK, and therein determin'd w the Seat of W; we have nothing to do, but from thence to carry a || to the Ground Line, and at its Interfection with the Radial LO, to take off (as before) the proper Perfpective Altitude, which is afterwards tobe erected upon the Point w in the Plan. For Lines drawn from the Extremity hereof, to Angles F, G, H, I, K, will compleat the Perfpective of the Pyramid.

PROP. XXVI. P R O B. X.
To fet any Sort of Oblique Prifm or Pyramid, in Perfpective,

For Pyramids; we fhall need only ond Perpendicular let fall from the Vertex, to the Ground Plane.

G 4
Having

[90]

Having therefore drawn the perfpective Plan, and determin'd whereabout in the Table, the Seat of that Point in the Ground Plane, on which the Perpendicular from the Vertex falls, will be; as alfo having de termin'd (by the Rules above given) the juft Meafure, of the Perfpective, of the fard Perpendicular: Laftly, having fet off this Perfpective Altitude, from its proper Seat in the Plan: There is no more to be done, but to draw Lines, from the Extremity thereof, to the feveral Angles of the aforefaid Perfpective Bafe or Plań.

In Prifms, the Matter is a little more troublefome, becaufe of the many Perpendiculars required to be let fall on the ground Plane, from the upper Angles of the Body.
(As eg. gr. in the oblique Quadrangular Prifm CDFEGHIK (Fig. 22.) from whofe. upper Angles, are let fall the Perpendiculars CL, F N, DM, EO; and whofe Side GH, and confequently IK, for facilitating the Work, I luppofe to be parallel to the Ground Line OQ.)

However, thofe Perpendiculars being let fall, and the Meafures of their PerfpeEtives, $p m, q o$, duly determin'd, as alfo their

Points

[91]

Points of Seat m, b, n, o, in the Table : Then if thofe PerfpectiveAltitudes $q o, p m$, be each fet off, in its proper Meafure, from its proper Point of Seat in the Table, viz. pm from b and m, and $q o$ from n and o; and Lines, viz. cg, $d b, f i$, ek, drawn from the Extremities of them, viz. c, d, f, e, to the correJpondent Angles of the Perfpective Plan, or Bafe, viz: g, h, i, k; and Lafly, if thofe Extremities themfelves be aptly joined with Right Lines, viz. cd, de, ef, fc; the Perfpective of the oblique Prifm propofed, will be compleated, viz. ikgbfecd.

S C H OL.

There is in thefe Cafes, Choice to be made of fome fuch Pofition of a Body to the Table, that the Work may be the eafieft and Jbortest pofible.

Thus for Example, the foremention'd Prifm CDEFGHIK, (at Fig. 22.) was placed with its Side GH parallel to the Ground Line OQ; and confequently the two entire Surfaces of it, GHCD, IKFE, parallel to the Plane of the Table. By this Means the two Perpendiculars CL, DM, being at equal Diftances from the Table, are reprefented in Perfpective by one and the fame Line $p m$. And fo the other

[92]

other two FN, EO, by the Line go. So that we have but thefe two Peripective Heights, to determine in this Cafe. Whereas, had one of the Angles as G, been turn'd towards the Table, we might have had three or four feveral Perfpective Altitudes, to have determin'd. If the Diago$n a l$ IH or NM, had been parallel to QO ; then there had beenThree, of which, that for CL would have been biggeft ; thofe for FN and DM, lefs than the former, tho' equal to one another, and that for OE leaft of all, as being the fartheft from the Table.

But if NM were not parallel to the Table, it is plain, there muft have been Four feveral Perfpective Heights found; fince the four Perpendiculars above-mention'd, would in that Cafe have ftood, at four feveral unequal Diftances from the Table.

The like is to be obferved, in other Fi. gures.

PROP. XXVII. PROB. XI,

To fot any Solid, contained under Plane Surfaces (whether Regular or Irregular) in Perfpective.

The Operation for the oblique Prifm, (in the laft Problem) will be a fufficient Direrection for this, without a particular Fi_{7}
gure

[93]

gure. Ex. gr. Let the Body propofed be an Icofaedron, which we will fuppofe fet on iits Bafe, which is one of the Tmenty Equilateral Triangles, under which it is contain'd. This Body having twelve folid Angles ; when it is fet on one of its containing Triangles as a Bare; there are nine of the faidAngles, remaining above the ground Plane, from each of which, Perpendiculars are to be let fall. And here now we fhall find, the Ufe of what was hinted at the Scholimm of the laft Problem; about the Choice of fuch a Pofition, that the Work may be the fhorteft poffible. For if the Equilateral Triangle, which is the Bafe, be turned with one of its Sides || to the Table; we fhall have the Perfpectives of but $f_{i x}$ Perpendiculars to determine. And the fame alfo, if one Angle of the Bafe be direCted to the Table in fuch fort; that a Perpendicular let fall from thence to the oppofite Bafe of the Equilateral Triangle, would, if produc'd, cut the ground Line at right Angles. For this is the fame Cafe as the former. But if it be fet in any other Pofition, we fhall have nine feveral Per. pendiculars to fet in Perfpective.

Having therefore let fall Perpendiculars from the elevated Angles to the ground Plane, and fet the Bafe (whereon the Body ftands) in Perfective ; and Lafly determin'd

[94]

termin'd the proper Heights of thofe feveral Perpendiculars, upon the Perfpective Table, and fet them off from their proper Points of Seat therein : If then the Points are aptly joyn'd (as the Infpection of fuch a Solid will beft direct) the Per/pective outLines of the Body will be compleated.

And thus may any. Body whatfoever, contain'd under Rectilineal Surfaces, be expeditioully fet in Perfpective.

PROP. XXVIII. P R O B. XII.

To fet all. Sorts of Cones and Cylinders, in Perfpective.

The Rule will proceed here in like manner as at Prob. X, for Pyramids and Prifms; abating only the Difference arifing from the Bafes, which here are Curvilineal Figures (wiz. Circles) and there, Rectilineal ones.

At Cor. I. Prop. V. I have Ghewn how to determine, when a Circle, fhall come an exact Circle, into the Perfpective Ta ble: That is, when the Perfpective of a Circle fhall be a Circle. And it muft always be either a Circle or an Ellipfis, when the Table ftands as we now fuppofe it, viz. Perpendicular to the Ground Plane.

[95]

For-that the Perfpective of a Circular Line, may upon other Suppofitions, be any other of the Conical Sections, as well as an Ellipfis; we have fhewn already at Prop. VI.

So that therefore if fuch Difance and Height of the Eye, be made Choice of, that the Bafe of the given Cone or Cylinder, be a Circle in the Perfpective Table; if the Seat of the Center, and the perfpective Magnitude of the Radius, be likewife determin'd, (by Prob. I. and II.) the Bafe is deefcrib'd with little Trouble.

But if any other Pofition be chofen, to that the circular Bafe, of the Cone or Cy linder, comes into an Ellipfis upon the Table; it may be defcribed fufficiently well for common Practice; by dividing the Circumference of the Circle into a good Number of Parts, and having found the Perfpectives of the feveral Points of the Divifion, to carry a Crooked Line thro' them, with a fteddy Hand. Or to go more Geometrically to work; the Ellipfis may be defcrib'd, by finding the Longer and Shorter Axes of it upon the Table (as fhall be fhewn by and by) or by many other Ways befides.

SCHOL:

[96]

SCHOL.

One thing is to be minded here with Regard to Cylinders (for there is no farther Difficulty at all in Cones) and that is, that tho' fuch a Pofition be made Choice of, that the Lower Bafe, ex. gr. fhould be a Circle in the Table, yet the Upper Bafe cannot at the fame time, be fo too, but will be an Ellipfis: Or wice verfá, if the Upper be a Circle, the Lower will be an Ellipfis

The Reafon of which is moft evident, from that aforefaid Cor. I. Prop. VI.

For fince the Difance from the Table, being given, there is a particular Altitude of the Eye required, in order to make the Perfpective of a Circle, to be a Circle; and fince in an Vpright Cylivder, the Upper and Lower Bafes are both equally diftant from the Table, but the Eye has not an equal Elevation over them both: 'Tis plain, that if the Height of the Eye over the Lower Bafe in the ground Plane, be fo proportion'd to its Diftance from the Table, that the Perfpective thereof Thall.be a Circle; the Lefs Height of the Eye over the $v p p e r$ Bafe, cannot be proportion'd to the fame Diftance from the Table, fo as to produce the fame Effect.

[97]

So that in an upright Cylinder, the Perfpective Appearances, of the upper and lower Bafis, can never be of the fame Kind, but if one be a Circle, the other will bean Etipfis; that is, fuppofing the Cylinder it felf, and the Eye, to retain the fame Pofition, and Diftance from the Table.

S C H O L. II.

To find the longer and borter Axes, of this Ellipfis, upon the Tabla

Imagine two Diameters in the Circular Bafe of the Cylinder, cutting each other at Right Angles, fo that one of them be parallel to the Table, and the other confequently perpendicqlar thereto.

The Perlpectives of thefe two Diameters, frund by Mrop. XI, and XII. will be the Axes of the Ellipfis to be defcribed upon the Table.

Now the Length of the Diameter being given, the Scenographick Contractions therenf, in thefe two Pofitions, are eafily found; by knowing the Diftances it lies at from the Table, viz. the fingle Diftance of the Diameter which is parallel, and the Diftances of the two Extremities, of that, which is perpendicular, to the Table.

Thefe

$$
[98]
$$

Thefe, I fay, being given, the Perpectives are found, by the Rules aforemention'd ; and confequently, the Axes determin'd.

P R O P. XXIX. P R O B. XIII. (Fig. 23, 24, 25.)

To jet a Row of Bodies in Per /pective.
We will take a Series of Parallelipipids, and fuppofe them rang'd in fuch Order, on one fide the Eye, that their Sides which are perpendicular to the Table, may lie all in a right Line. And we will imagine one of them to be contiguous to the Table; which will in fome Meafure fhorten the Work.

Let (Fig. 23.) the Point of Sight be at A, the Point of Diftance $B,{ }^{\prime} Z$ the Square Bafe, and WQ one of th Including Rectangles of the Parallelipipid propos'd.

Make $C D=W X, D H=X Q$, as alfo HW = DH. Draw the Lines HA, DA, CA, from the Points H, D, C, to the Point of Sight A.
Joyn the Points BW, with a right Line, interfecting the Radial AH in G, from whence a parallel to the Ground Line DWZ, cuts the Radial AD in F, and determines the Trapezium HDGF, for the Perfpective Bafe of the firft Parallelipipid. Laftly,

[99]

La afll, from F raife a Perpendicular to DZ , (or which is all one, a Parallel to DC , which we fuppofe perpendicular to DZ) which interfects the Radial AC in E; and thus we have the diminifh'd Altitude EF_{5} and confequently DCEF for the PerfpeCtive Reprefentation, of the Side - Reetangle or Surface of that firft Parallelipipid. And from this Bafe and Side - Superficies, all the reft that finifhes the Perfpective of the faid Body, is determin'd.

And thus are the Bafes and Sides found for the reft, viz. OMNI, LMIK, for the Second, ; VSQT, RSPQ, for the Third, and fo on.

Note, If the firft Parallelipipid had not been fuppofed contiguous to the Table, the Side DH, could not have lien in the Ground Line, but would have been at fome Diftance from it, and fo would have been diminifbed, and not appear'd in its full Bignefs, as now it does.

And the Reafon, why we made HW $=H D$, is becaúfe the Bafe Z being fuppofed a Square, that fide thereof which lies oppofite to DH , cannot be diftant from the Table any more or lefs, than the Length of DH it felf; for (as I faid) this firft Parallelipipid is contiguous to the Table.

Nor is there any other Difference in the Work, when one Body is placed contiguOKS

[100]

ous to the Table, and when they are all at a Diftance from it, than only this, that in the former Cafe 'tis fhorter, by as much, as finding the Perfpective of one Line amounts to.

The Perfpective Plans and Elevations being found, as at Fig. 23. the Peripeetives of the whole Solids are fet together very eafily, as at Fig. 24. Ex. gr. The Plan GFHD, Fig. 23. being transferred to $\mathrm{gff} d$, Fig. 24. upon the Points h, d, erect the Perpendiculars $d c, a h,=\mathbf{D C}$, and at g, f, the Perpendiculars $g b, e f,=$ EF, and joyning thePoints at top and bottom, with right Lines, (as in the Fig.) the out Lines of the Parallelipipid are compleated. In like Manner for the Second and Third, transfer the Plans $\mathrm{OMNI}_{\text {s }}$ VSTQ, into omni, vst q, and erect the Perpendiculars KI, LM, ?n the Second, and PQ, RS, in the Third, each in its proper Place; and fo fill up the out Lines for them, and the reft, if there were more.
Lafly, The Parallelipipids compleatly finifb'd and Jbaded, appear as at C, D, E, Fig. 25.

[101]

PROP. XXX. PROB. XII:
(Fig. 26.)
To reprefent a Pedeftal, in Perfpective:
This is done very eafily, by Help of the Directions given at the laft Problem.

Let the Geometrick Plan or Bafe be F, the Geometrick Elevation or Profle C, the Point of Sight at A, and of Diftance B; the Lines CK, and HK perpendicular to each other.

Having put the Bafe F into Perfpective, as at E , and drawn the occult Lines b, b, $6, \& c$. from the feveral Angles of the Elevation C, perpendicular to HK , as alio the occult Lines $c, c, \& c$. parallel to CK: Suppofe the Perfpective Elevation D, to be compleated.

This being fet in two oppofite Sides of the perfpective Plan, as was done for the Parallelipipids (at Fig. 24.) will compleat the Perfeective outlines of the Pe deftal.

And the whole adorn'd with its proper. Shades, will appear as at G.

PKOP. XXXII. PROB. XIH.

 (Fig. 27.)To delineate the Porfpective Reprefentation of the Roof, Pavement and Side-walls, of any long Room or Entry, whofe Dimenfons are given.

Suppofe BC the Height, CD the Breadth, CH the Length, of the Place propos'd, IE the Eye's Height, FE its Diftance; all taken off in their proper Meafures, from the fame Scale of equal Parts. The Table is imagin ${ }^{\text {h }}$ do ftand perpendicular upon $C D$, (which is therefore our Ground Line) and the Spectatours Pofition fuch, that a Perpendicular from his Foot to CD, falls thereon at the Point F ; which Perpedicular is EF .

Having drawn the Reftangls BCAD, one of whofe Sides is the Height, and the other the Breadth (and is the Geometrick Section of the Room by a vertical Plane, Breadth-ways) produce the Line EF, till it cuts BA in K. In the Line FK, fet off the Eyes Heighe IE from F to N , and draw the Lines NC, ND:

By Corol. I. Prop. XI. find the PerfpeCtive Contraction, of the Length of the Plaçe, viz. GH; faying,

$$
[103]
$$

As the Sum of the Length, and the Eyes
Diftance from the Table,
Is to the Height of the Eye;
So is the Length it felf,
Toits PerfpectiveCostraction, or Forefhortning.

That is, GH+FE:IE:: GH : to a Fourth, or the Forefbortning fought,

This being taken off, from the Scale ufed before, for the Geometrick Delineation, is to be laid in the Line FN, from Fex.gr. to L. Thro' the Point L, draw PO parallel CD, interfecting the Lines NC, ND, in the Points R, S .

Again, By Corol. II. Prop. XIII. find the Perfpective Contraction, of the Rooms Height BC ; faying,

As the Sum of the Length, and the Eyes Diftance,
Is to the Eyes Diffance, So is the Height it felf (of the Place)

To its Perfpective Contraction.
That is, $\mathrm{GH}+\mathrm{FE}:$ FE : : BC : to a Fourth, which is the Contraction fought.

Let this be taken off from the fame Scale, and laid in the Line FK_{2} from the Point L. (determin'd before) to $W e x . g y_{0}$. H3

[104]

or which is the fame thing, fet it off in the Lines RQ, ST, which are parallel BC, from the Points R, or S, to Y, or X. Which done, compleat the Rectangle RSYX, and draw the Lines BY, AX. Or elfe, having fet off LW, thro' W draw NM parallel to BA, which cuts the Lines NB, NA, in the Points \mathbf{Y}, \mathbf{X}, and fo does the very fame thing. And thus all the outlines, of the intended Peice of Perfpective, are drawn.

For the Trapezium CRSD, is the Reprefentation of the Floor, BYXA of the Roof, BYRC and AXSD of the Side Walls.

PROP. XXXII: PROB. XIV. (Fig. 28.)
To reprefent an Arch in Perfpective.
This Work is fo like that of the foregoing Problem, that there need not be much faid of it.

The Eye's Height is fet off from \mathbf{N} to L. The Line MN is the Perfpective Contraction of the Length (or Depth) and GM, of the Height; anfwering to EF, and WL, in the laft Figure, and obtained by the fame Proportions. The Figure HGKPV is here in this Cafe, what YXRS was in that; the Circular Arch, being carry'd
thro'

[105]

thro' the three Points H, G, K, which are determin'd by the above-mention'd Rules, which give the forefhortning of the Length and Heights.

The Lines BH, $n m$, EK, $r q$, OW, TV, YZ, PR, are directed to the Point of Sight $\mathrm{L} ;$ as in the former Cafe, CR, DS, BY, AX, were carry'd towards N. In a Word; TVPR is the Perfpective Reprefentation of the Ground Area, BHTV and FKPR of the Sides, and HBAEK, of the Concave Superficies of the Arch.

And by the Help of thefe two Examples, may any other Delineations of the like Nature be perform'd.

PROP. XXXIII. PROB. XV. (Fig. 29.)

To perform the Practice of Perfpective, without Regard to Point of Diftance, or any Accidental Point whatJoever.

Let the Table be ABDI, the Point of Sight C, the Eyes Height CE, any vilible Point in the Ground Plane, \mathbf{P}, whofe In_{-} cidence on the Ground Line, is at H , and its Diftance PH.

CONSTRUCTION.

Draw the Line DO in any Angle at Li .

[106]

if it happened to be lefs) equal to the Eye's Diftance from the Table, NO (or LM) = PH , the Diftance of the given Point from the Ground Line: Draw OI (or MI) and NK (or LK) parallel thereto. Thro' K draw KS parallel to BI, and laftly CH interfecting KS in \mathbf{Q}.

I fay that Q is the proper Place or Seak of the Point P, in the Perfpective Table.

DEMONSTRATION.

Call the Perfpective of the Line PH, π. By Prop. XI. PH: π : : DN $+\mathrm{PH}: \mathrm{CH}$,
$\therefore \mathrm{DN}+\mathrm{PH}: \mathrm{PH}:=\mathrm{CH}: \pi$,
\therefore DN : PH:: CH- $\pi: \pi$, But $\mathrm{NO}=\mathrm{PH}$ (Confrtect.)
\therefore DN: $\mathrm{NO}: \mathrm{CH}-\pi=\pi$.
Again, DN ; NO;: DK: Kl:: CQ: QH (Similar $\triangle^{\text {s/s.) }}$
$\therefore \mathrm{CQ}: \mathrm{QH}:=\mathrm{CH}-\pi: \pi$,
$\therefore \mathrm{QH}: \mathrm{CH}:: \pi: \mathrm{CH}-\pi+\pi=\mathrm{CH}$,
$\therefore \mathrm{QH}=\pi$.
Therefore Q is the Seat of the given Point P, in the Perfpective Table. R.E,D,

SCHOL:

$$
[107]
$$

S C H O L:

'Tis fufficient, to have Shewn the way of tracing out by this Method, the Seat of any Point in the Perfpective Table; fince from hence any Figure whatfoever may be eafily laid down.

But the Ways for doing thefe things are endlefs; and therefore I Shall leave it to every one, to invent or follow what Method he pleafes.

Having now difpatched what Problems are neceffary, to render any Studious Perfon fufficiently well acquainted with the Practice of the Direct Method of Perfpetave, upon Vpright or Vextical Tables.

I Thall add one or two Própofitions, tending to the farther Illuftration, and Improvement, of this curious Subject ; and then come to fhew how we are to proceed upon Horizontal and Inclin'd Tables.

After that, in a few Inftances, I hall exemplifie the Inverfe Method of Perfpective; that is, how to go back from the Perfpective, to the Original, or ObjeA, whofePerppective it is. And the foregoing Rules being well underftood, there will be no Need, to fay much upon that Matter:

[108]

PROP. XXXIV. THEOR,
 (Fig. 7.)

Every Deformation, is a regular Piece of Perfpective, upon the very fame Plane; to the Eye, plac'd at another Height and Difance.

I have already faid fomething in general at Prop. VII, and its Coroll. concerning the Nature of Optical Deformation, and its Diftinction from what we commonly call Perfective. It is thewn there, as alfo at Schol. Prop. VI. that this is no other than an inverted Sort of Perfpective; and that upon the Account of the different Order, in which the Object and the Table lie, with refpect to the Eye.

But I hall now demonftrate other Rear fons for its being fo, and fhew how thefe Practices, do all fall within the Rules of the ordinary Perfpective.

CONSTRUCTION.
Let the Eye be at K , its Height KV, the Ground Plane (which ferves as a Table in this Cafe) VSTDE; on.which is perpendicularly erected the Plane Figure ABPN, which is projected by the Eye at K, into PNDE.

$$
[109]
$$

We will fuppofe the Figure ABPN to be a Rectangle, and confequently, its Deformation E NDE, is a Trapezium; whofe Side PN is parallel DE.

Upon DE erect a Plane, as MQFH, perpendicular to the Ground Plane, which produce out both Ways at Liberty. Let fall a Perpendicular thereto, from the Eye at K; which cuts it in the Point G.

DEMONSRATION.

The Lines PD, NE, concur in V, the Foot of the Eye's Perpendicular (by Com fruction, at Prop. VII.) And fince the Plane MQFH is (by the Hypothefis) perpendicular to the Plane STDE; therefore if the Former be made a Ground Plane, and the Latter a Perfpettive Table ; its evident that the Parallels MF, QH infinitely produced, will run up to fome Point of Sight; in the aforefaid Plane STDE. Now if KG be made the Height of the Eye, and KV its Diftance from the Table; then the Point of Sight is V, and the Lines DV, EV, the Perfpeetives of the Parallels DF, EH, infinitely produced ; and therefore PD, NE, are the Perfpectives of fome Finite Portions of thofe Paralles. Therefore the Eye being at K, the Ground Plane MQFH, the Table VSTDE, the Eye's Heigbt KG, its

[110]

its Diffance KV ; the Trapezium PDNE, is the true Per \int petilive, of fome Portion of the Rectangle DERH produced. But the fame Trapezium was the Deformation of the Retangle ABPN, to the fame Eye at $\cdot K$, its Height being $K V$, its Diftance VO, and the Table STDE. Therefore, $\neq c$. R. E. D.

SCHOL. I.

We may eafily determine, what Part of the Infinite Retangle, FDEH, the Deformation PNDE, is the common PerfeEtive of, upon the Table VSTDE.

Fordrawing AI or BI, parallel to VDor VE, and VO perpendicular to PN, and produced to cut DE in T; ; from Similar Δ^{15}, arifes KI ($\left.=K V-I V=K V-B N\right)$: IB (=VN) :: KV: VE.

Again, VN: PN: : VE: DE; and Laft$\mathrm{ly}, \mathrm{VE}-\mathrm{NV}=\mathrm{NE}$.

Now then, if we take.DE for the ground Line, and ereat the Infinite Plane VSTDE perpendicularly thereon, as our new Table, and alfo at Right Angles there to the Infinite Plane MQFH, for our ground Plane; we have then the Height, and Difance of the Eye, as alfo the Perfpective Conitraction of.fome Portion of a Dired Line to find (by Prop. XI.) the Length of that Direct Line jit felf. That is, we have KG $(=V T)$ and

[int]

- KV, and NE, to find the Length, of which NE is the Scenographick Contration.

And this being found, we may pronourice, viz. that a Rectangle one of whofe Sides is DE, and the other the Line thus found, being put into Perfpective by the commo Rules,for the Height and Diftance of the Eye, GK, and KV ; will be the true Deformation of the given Rectangle AN, upon the fame Plane, but with the Height and Diftance of the Eye, KV , and VO.

S C H O L. II.

Since Shadows are nothing but the D efor: mations, or Projections of the Out-lines, of Bodies, upon certain Planes; and fince we have demonftrated, how the Practice of Deformations is reducible to that of the Common Perfpective: ${ }^{\text {'Tis }}$ Tlain, that the Practice of Sciagraphy, or of determining the Shadows of Bodies, is likewife reducible to the fame; fo that from the neceffary Data (of the Figure of the Body, and) of the Height and Diftance of the Light, we may fettle the proper Height and Diftance of the Eje, that the Shadow may be drawn upon a Table, as an ordinary Piece of Perfpective.

LEM.

[112]

L E M. (Fig. ${ }^{\circ} \mathrm{O}$)

If there be any Number of Planes, cutting each other in the Same Rigbt Line; and another Plane be drawn Perpendicular to their common Section: Then, the common Sections of the former Planes with this laft Plane, Jball be all at rigbt Angles, to the common Section of thofe faid Planes.
The Planes MLGQ, MKFP, MIEO, whofe Ground Lines, LQ, KP, IO, are fuppofed Parallel; cut each other in the Line MBN, and are all of them cut, by the Plane ACD , in the Lines $\mathrm{BE}, \mathrm{BF}, \mathrm{BG}$, refpectively. The Line MB, is fuppofed perpendicular to the Plane ACD, at the Point B. Thefe things fuppofed ; I fay that MB, the common Section of the aforefaid Planes with one another, Shall be at right Angles to the Lines BE, BF, BG, the common Sections of the fame Planes, with the Plane ACD.

This is fo manifef from Eucl. Elem. ir. that there is no need of infifting on the Proof of it.
COROL.

The Triangles MBR, NBR, MBT, NBT, שor. lying in the Planes MLBGQ; MKBFP, \mathcal{G}° c. are all of them Rectangular at B.

$$
[113]
$$

PROP. XXXV. THEOR: (Fig. 30.)

If an Objecti in the Ground Plane, appear to the Eye, in Direct Vifion, in any Points whatfoever of an Upright Per/pective Table; then, if a Plane Speculum, were fubftituted inflead of the Table, and the Eye placed at the fame Diftance, on the other Side thereof; it would receive the true Perfpective of the Object, by this reflex'd Vifion, as before by the Direct.

DEMONSTRATION.

Let the Eye be at M, the Table ACDH, any Object as OPQ, in the Ground Plane; whofe Perfpective, or Image in Direet Vifion, is STR.

The common Sections, of the Plapes MLGQ, MKFP, MIEO, with the Plane of the Table, wiz. GR, FT, ES, do all run up to the Point B; as has been demonftrated at Prop. IX.

And (by the foregoing Lemma) thefé Lines RB, TB, SB, are each of them perpendicular to MB, the common Section of all the Planes.

Let us fuppofe then in the next Place, that the Table ACDH were a Plane Speculum,

[114]

lumim, and that the Vifual Rayes PT, QR; OS, were reffected thereby, into the Lines $\mathbf{T q}, \mathrm{Sr}, \mathrm{Rp}$, at the Points T, R, \mathbf{S}; at which Points we imagine $\mathbf{T c}, \mathbf{R b}$, Sa , to be erected perpendicularly, to the Plane of the Speculum; and confequently to lie in the Planes MKBFP, MLBGQ, MIBEO. And let the Line MB, which is by the Suppofition perpendicular to the Plane of the Glafs, be produced out in the other Side at Liberty, as BV. By the known Laws of Catoptricks, the Angle PTc = $\mathbf{c T q}, \mathbf{Q R b}=\mathrm{bRp}, \mathrm{OSa}=\mathrm{aSr}$. But becaufe Rb ex. gr. is perpendicular to the Plane of the Speculum, therefore the Angles bRB and bRG, are right ontes. And confequently, the Angle $\operatorname{BRp}=$ the Angle QRG. But $\mathrm{QRG}=\mathrm{MRB}$; therefore $\mathrm{MRB}=$ BRp.

Let Rp cut the Line MV, in N.
Then, fince $M B R=N B R$ (being right ones, by Corol. to Lemb. foregoing) and MRB $=$ NRB, and $B R$ common to both Triangles ; 'tis plain that $\mathrm{MB}=\mathrm{BN}$. In like Manner, we will demonftrate; that the Angle BTM=BTN, and BSM $=$ BSN.

And confequently, that the other reflex'd vifual Rayes, Tq, Sr, do alfo meet in the fame Point \mathbf{N}.

[115]

And therefore were the Eye placed at N , it would fee the ObjeCt OPQ, by the Means of the Glafs ; appearing at opq, on the other Side, juft as OPQ it felf appears, on this Side.
That is; as the Eye at M , fees the Ob ject OPQ, in Direct Vifion, appearing on the Table, as SRT; fo the Eye at N (equally removed) fees the fame Object, by the Help of the Glafs, appearing at opq, juft as far behind the Glafs, as OPQ is before it, and in the very fame Form too, viz, That of SRT, which is the fame Perfpe, ctive. R.E.D.

C OROL.

Hence Plane Looking-Glaffes, may be ufefully apply'd, to the Purpoie of drawing Pieces of Perfpective.

PROP. XXXVI. THEOR. (Fig. 31.)

Images, formed by Reflexion from Plane Glafjes; are regular Pieces of Perfoctive; in which the Height, and Dyfance of the Eye, as allo the proper Point of Sight, are all eafily determinable.

This Propofition, differs much from that which went before, For what was fhew'd

[116]

there, was this; that the Eye, by the Help of a Plane Glafs, might have the very fame true Perfpective of an ObjeCt, which it would have, for any given Height and Diftance of the Eye, in Direct Vifion.

But what is to be proved here, is this; that a Light being plac'd before a Plane Glafs, the Image of the fame Glass, formed by the reflex'd Light; ex. gr. upon the Roof or Cieling of a Room, will be a regular Piece of Perfpective, whofe Point of Sight is fomewhere determinable, upon the aforefaid Roof or Cieling. So that the Looking-Glafs, is here, not only the I_{n-} Arument to reflect, but alfo the Object it felf, whofe Form is reflected.

For as in other Cafes; a Speculum receiving the Species of fome ordinary $\mathbf{O b}$ jeCt, reverberates it, and makes that Object vifible to the Eye at a proper Diftance and Pofition; fo here, a Speculum receiving the Rayes of an actual Light, or Luminous Body; returns it own Form or Shape, upon a neighbouring Plane; which will be very different, according to the Pofitions of the Glafs, the Plane, and the Luminary it felf.

DEMON.

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 17
\end{array}\right]} \\
\text { D E M O N. }
\end{gathered}
$$

Let ABCD be a plane Looking-Glafs, ex. gr. of a Rectangular Form, the Light at E , which falling on the Glafs in the Rayes EC, EA, EB, ED, is refleted up to the Ceiling TNOL; and figures there, the Speculum it rebounded from, in the Form of a Trapezium abcd, whofe two Sides, ex. gr. ab, and cd, are parallel to each other.

Suppofe the Plane of the Glafs, if continued, to cut the Ground.floor in the Line ST, which is crof'd at right Angles in I, with the Line EF, at one End of which, ftands the Light \mathbf{E}.

Take IF (bebind the Glafs) $=\mathrm{IE}$, the Diftance of the Light before it ; and from the Point F, erect a Perpendicular to the Floor, viz. FG, which ftrikes the Ceiling in G.

I fay G is the proper point of Sight, for the Perfpective cabd; or 'tis that in which the converging Sides of the Trapezium, $c a$; $d b$, if produced, would meet.

By Prop. XXXIV. Theor. If the Eye be plac'd at F , and were fuppofed to project the Object ABCD upon the Ceiling TNOL (which we fuppofe parallel to the Horizon) the Deformation aßxd will be a regular I 2 Piece

[118]

Piece of Perfpective, upon the very fame Plane; in which the Point of Sight will be G, and the Eyes Diftance from the Table, FG, and its Altitude, a Perpendicular from F'to a vertical Plane paffing thro' $x \delta$.

And vice verfd, the Perfpective $\alpha \beta x \delta>$ upon the Ceiling, appears to the Eye at F , as the Rectangle ABCD , upon the Vertical Plane ABST.

But byProp.XXXV. Theor. the Speculum being ABCD, if inftead of the Light, an Eye were placed at \mathbf{E}; it would receive the fame Appearance, of the Object, aßxd, by this reflex'd Vifion, at E , which it had before in direct Vifion, when.plac'd on the other Side at F ; the Diftance IF being $=\mathrm{IE}$.

That is, the Rayes $\mathrm{F} \alpha, \mathrm{F} \beta, \mathrm{F}_{\chi}, \mathrm{F} \delta$, would be reflected into EA, EB, EC, ED. And therefore, on the other Hand, if infread of the Eye, a Light be placed at $\mathrm{E}_{\text {, }}$ the Incident Rayes EA, EB, © σ c, will be reflected by the Glafs $A B C D$, into $A \alpha, B B$, $\mathrm{C}_{x}, \mathrm{D}^{\Omega}$, which if produced would all meet in H .
So that 'tis plain, the Projection aßxs,', and the reflected Innage abcd, perfectly coincide with one another. And therefore the faid reflected Image abcd, is a regular Piece of Perfpective, whofe Point of Sight is \mathbf{G}. Q.E.D.

COROE:

[19]

COROL.

Hence again, Plane Glaffes may be applied to Perfpective Ufes; but after a mapner very different, from what was fuggefted at Corol. of the foregoing Prop.

Of Horizontal Petfpective.

Tho' we have hitherto been profeffedly confidering only Upright Tables, and how to trace the Appearances of Objects on them; yet the last Propofition intimates fo much of the Reafon of the Practice on Horizontal Tables likewife, that we have notonly a very eafie and natural Tranfition from thence, to this Speculation, but fhall alfo find it neceffary to fay lefs of that Matter than otherwife, upon the Scpre of what we have there demonftrated.

- PROP. XXXVII. THEOR, (Fig. 32.)
:Tis the fame thing to dratw a Piese of PerSpective, upon an Horizontal Table; as upon a vertical Table, the Eye's Height aqnd Diftance being alternately charged.

$$
\text { I. } 3 \text { DEMON: }
$$

$$
[120]
$$

DEMONSTRATION.

Let the Eye be at A; GO, the Ground Plane, AG its Height above the fame; BE an Horizontal Plane above the Eye, DH a Plane perpendicular to the two former, AB, the Eye's Diftance from the Horizontal Plane, AN, its Diftance from the Ver tical Plarie, D any vifible Point in the Plane DH,

From the Eye at A draw the vifual Ray AD, cutting the Horizontal Table in C .
'Tis plain that C, is the Perfpective of the Point D (lying in the vertical Ground Plane ED $/$ in the Harizontal Table BE, to the Eye, at A, whofe Diftance from the Table is $A B$, and from the vertical Ground Plane, is $\mathrm{AN}=\mathrm{BE}$.

And therefore fince the Angle AND is a right one; if, while the Eye continues ftill in the fame Point at A, we fuppofe HD, which was before a vertical Ground Plane, now to become an Horizostal one; as alfo AN and BE, which before were Horizontal, now to be fet perpendicalar to the Horizon: It is evident, that by this Change of Pofition, all things are now reduc'd to the common Cafe of Opright Tables.

For

[121]

For DH is the Ground Plane, BE the Vertical or Upright Table, AN the Height of the Eye above the Ground Plane, AB its Diftance from the Table, and \mathbf{B} the Point of Sight thereon.

And in either Cafe, the Point \mathbf{C}, the Perfpective of D, continues in exactly the fame Place and Pofition in the Table. And for the fame Reafon, would the Perfee. Ctives of any other Points in the Ground Plane HD, be the fame when BE ftands vertical, as when it lies parallel to the Ho rizon.

And therefore, 'tis the fame thing to draw a piece of. Perfpective upon, Or. O.E:D.
C O R OL. I.

The Rule therefore for Practice, is this, vix. To draw upon the Horizontal TableBE, after the manner that we would do, if it were an Upright one; wherein B hould be the Point of Sight, AN the Eye's Height, and AB its Diftance from the Table.
C OROL. II.

The fame Rules hold, whether Pieces of Perfpective of this Kind, are to be drawn on Planes above or below the Eye; as ex.: gr, whether on the Roof or Ceiling of a

$$
\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]
$$

Church, fo as to be view'd from the Floor, or on the Pavement, fo as to be view'd from 2 Gallery.

COROL. III.

Were a Pedefal or Column (or a Rank of each) ftanding perpendicular to the Horizon, to be reprefented in this fort of Perfpective, ex. gr. upon the Cieling; it would be the fame thing, as to place the fame Pedeftal or Column, parallel to the Horizon in the Ground Plane; and then draw the Perfpective of it, upon an Upright Table, ex. or. a Wall.

For thus; if we fuppofe, the Line DE (for Example) to be a Pillar, perpendicular to the Horizon GO; it will be all one, to reprefent this in Perfpective upon the Cieling BE; as it would be, if DH being the Horizon or Ground Plane, and confequently the Pillar DE lying flat thereon: we fhould draw the Perfeective of it, upon the Wall, or vertical Table BE.

And it is to be obferved; that in either Cafe, the Circles keep their proper Form in the Perfpective; as lying in a Pofition parallel to the Table, and confequently (by Prop. V.) being Circles there likewife.

And the Sides of the Columns, are Direct Lines, or fuch as are perpendicular to the Table,

[123]

Table, and therefore in the Table are carried up to the Point of Sight B.

And upon this Account Horizontal Perfrective is indeed much eafier, than Vertical, or that which is perform'd upon an Upright Table; contrary to what the Painters generally imagine. For 'tis plain, that 'tis eafier, ex. gr. to put a Column, that lies flat on the Ground Plane, into Perfpetive, upon an Upright Table; then 'tis to draw the Perfpective of that fame Column, ftanding perpendicular to the Ground Plane, upon the fame vertical Table. For the Difference lies here ; That in the former Cafe, the Circles (as I faid) keep their Form in the Table; and the Sides likewife, are all carry'd up to the Point of Sight; whereas in the latter, the Sides are to be fbortzed upon the Table, and alfo the Circles cannot keep their Form ; for the Reafon of which, I refer to Schol. I. Prop.5. But now; we have Thewn, that 'tis the fame thing to reprefent an Upright Column, in Peripective, upon on Horizontal Table; that 'tis to reprefent that fame Column, lying flat in the Ground Plane, upon an upright Table. And therefore, I fay the Practice of Horizontal Perfpective, is in many Refpects much eafier than that of V ertieal.

SCHOL.

[124]

SCHOL.

We may eafily determine where an V_{p} right Table ought to be plac'd, that the fame Object, may have the fame Perfpective thereon, which it has on any Horizontal Table; the Eyc keeping the fame Pofition in each Cafe.

As if (Fig. 32.) the Eye being at A, we were to find where a vertical Table ought to ftand, as in ex. gr. where in HN or SP, © σ. that fo the Perfpective of the Line DE thereon may be the fame as that of the faid Line DE, upon the Horizontal Table BE ; the Eye continuing ftill at A.

Put $\mathrm{HO}=\mathrm{DE}$. Then by Similar Angles HO:HI :: GO : AG, alfo DE:CE::DN : AN; wherefore the Perfpectives CE and HI, are as $\frac{D E \times A N}{D N}$, and $\frac{H O \times A G}{G O}$, or $\overline{\mathrm{DN}}$ and $\frac{\mathrm{AG}}{\mathrm{GO}}$. Therefore if $\mathrm{CE}=\mathrm{HI}$, then will AN : DN :: AG : GO, and fo the Rectangular Triangles ADN, AGO are Similar, and therefore the Angle ADN, $=A O G$, or $D A B=O A N$, or $D A B+D A N$ $=O A N+D A N$; but DAB+DAN, or BAN, is a Right Angle by Confruction, and therefore OAN+DAN muft be fo too. And confequently we muft draw A_{3}

$$
[125]
$$

$A Q$ perpendicular to $A D$, and having fet off $\mathrm{QP}=\mathrm{DE}$, erect the Perpendicular PS ; for then on this Table, fhall the Peripective PR, be equal to CE, upon the Horizontal Table; the Eye in both Cafes being at A. Q.E.I.
cor ol.

If the Figures BN and AN, were Squares; then in this Cafe the Vertical Table ought to ftand in NH, in order to our having the Perfpective $\mathrm{NH}=\mathrm{CE}$.
For they being Squares, then $\mathrm{AG}=\mathrm{AN}$ $=\mathrm{EN}=\mathrm{GH}$; and becaufe $\mathrm{HO}=\mathrm{DE}$ by Suppofition, $\therefore G O=D N$, and fince CE $\mathrm{HI}:: \frac{\mathrm{DE} \times \mathrm{AN}}{\mathrm{DN}}: \frac{\mathrm{HO} \times \mathrm{AG}}{\mathrm{GO}}$, 'tis plain the Scenographick Projections, on thefe two Tables are equal to each other.

Of the Practice of Perfpective, on Tables Inclin'd to the Horizon.

Though the Rules of this Perfpective, have much Affinity, with thofe before demonftrated for Vertical or Vpright Tables; yet there is not that Sort of Coincidence, or Agreement betwixt them, that fome of the Writers of this Science have imagin'd.

Thus

[126]

Thus (for Example) M. Lamy's Account of this Matter, as we find it in his PerSpective, printed at London 1702 ; is far from being either clear or genuine: and that abating all Miftakes of the Prefs.

Let (Fig. 33.) BG be the Ground Plane, SE an Upright Table; HE an Inclin'd one, the Eye's Height, AB, its. Diftance from the Vertical Table, AP, the Line BC= AB , and $\|^{1} \mathrm{EH}$, and from C , a Line as CN $\|^{1}$ BG, ftriking the Inclin'd Table in the Point N , and therefore $=\mathrm{BE}$.

Suppofe the Eye at C , viewing any Point as G in the Ground Plane, and by the Vifual Ray CG, making its Perfective Seat, in the Inclin'd Table at F ; fo that EF, is the Perfpective of FG, on the faid Table, to the Eye at C.

Now he tells us, that (keeping the fame Point of Station E) if we bring the Table EH into the Upright Pofition ES; and the Spectatour moves back from BC to BA; that then the Point C coinciding with A, and N with P , the Point F which is the Perfpective of G, to the Eye at C, upon the Inclin'd Table, will alfo coincide with D, which is the Perfpective of the fame Point G, to the Eye af A, upon the Uprigbt Table: that is, that EF=ED.

And indeed it is true, that if the Poftures of the Spectatour and the Table, are thus hifted

$$
\left[\begin{array}{ll}
127
\end{array}\right]
$$

Shifted as he fuppofes; the Points Cand A, N and P , will coincide. Alfo I allow that F and D will do fo too; or that EF will $=E D$.
For from Sim. $\triangle^{1 s} B G: A B:: E G: E D$, Alfo,

BG: BC:: EG: EF,
Therefore ED $=E F$; tho' at the fame time, his way of proving it, is (to fay no more) very confus'd and odd.

However, that we pals by ; and grant him, that ED is equal to EF. And what if it be fo; what follows from thence? Why then fays he; The Perfpective of G, after this Change of the Pofftions, will be fousd in the very Same Point of the Picture; that is, when the Table is fet upright, and the Spectatour has erected himfelf likewife; it will be juft were it was, when both were inclin'd. Very well! And now then, what is the Rule arifing from hence, in order to Practice? Why he tells us, That we are to drapo the Perfpective of an Cbject upon the upright Table ES, according to the Rules before given; making $A B(=\mathrm{BC}=\mathrm{EN})$ the Height of the Eye, and its Diftance, AP ($=\mathrm{BE}=\mathrm{CN}$). the Point of Sight P, in this Table, being the fame with N, in the other; becaufe the Lines $E N$ and $E P$ are equal. And when this is done, we are only to fet the Table ES, back again into the Place EH, and the

[128]

Spectatour to betake bimfelf to hisfooping Pofure, fo as to place his Eye in the Point C; and then the Perfpective will anfwer ExpeElation.

But this Gentleman to be fure, did not . confider, that tho'the Perfpective of G, on at the Inclin'd Table, with refpect tothe Eye C; does thus coincide with the Perfpectives of the fame Point, on the apright Table, to the Eye at A; and tho' there will be (by Vertue of the fame Demonftration) the like Coincidence, as to the Perfpectives of any ofher Points, taken in the Jame Line EG; yet when he comes to take a Point, that lies in fome other Line; and not in EG; be must then of neceffity Jbift his Eye from C, into fome other Place, in order to obtain this Coincidence of Perfpectives, upon the two Tables. And this will be demonitrably evident to any one, if the Tables, which are here reprefented by frait Lines only, be but reprefented in their proper Dimenfions as Plane Figures. And therefore, as many different Lines of Incidence as there are, in which the Points in the Ground Plane, whofe Perfpectives he would find, are polited: So many feveral Removes andShiftings, of the Eye from C, mult there neceffarily be: that is, the Spectatour muft put himfelf, into the fame Variety of new Places and Poftures; in order to have the Perfpectives, of the

[129]

the Points of an Object, on an Inclin'd Table, coincident with the Perfectives, of the fame Points on an upright Table. And what an eafie and practicable Method this would be, of drawing a piece of Perfpective on an Inclind'd Table; I leave it to the World to Judge.

But, which is the main thing of all; he has quite drop'd the true Problem, and fubftituted an other in the Room of it.

All that is of Ufe, and which is what a Man would enquire after and expect in the Solution of fuch a Problem; is how to drand upon an Inclin'd Table, ex.gr. EH; keeping his perpendicular Pofture $A B$, and his Eye, continually in the felf fame Point at $\boldsymbol{A}_{1}^{\prime}$: And not, how he may Jbift bic Eye from A, into an other Pofture C, and there have his Perfpective F, coincident with D , when the Table and Spectatour are both fet upright again; and fo to go on at this Rate, into an Infinity of Poftures and Pofitions; which in Practice, is to do nothing at all, and therefore to prefcribe it, is to teach nothing at all. Certainly, as there are Rules for Drawing upon Vertical and HorizputalTables, not incumber'd with any fuch precarious Changes and Removes of the Eye; fo the like Rules be demonftrated for Tables inclind'd to the Horizon; and the Principles on both Sides are fo near

[130]

near a-kin, that the Application is not difficult, to be made from the one to the other.

PROP. XXXVIII. THEOR. (Fig. 34.)

The Point, to which the Perfpectives of any Parallels in the Ground Plane, converge apon Tables Inclin'd to the Horizon; is (as ins thofe which are Vertical) determin'd by the Interfection of the Table, by a Ray pafing from the Eje, parallel to the aforefaid Parallels in the Ground Plane.

Let the Eye be at A, its Height AB, the Ground Plane CHDI, the Inclin'd Table CEFD, any Parallels in the Ground Plane, CLH, DKI ; the Line LK parallel to the Ground Line CD. Draw the Vifual Plane ALK, whofe Section by the Plane of the Inclin'd Table, is MN ; which is therefore the Perfpective Reprefentation of the Line KL, upon the faid Table.

It's evident, that when the Vifual Plane ALK, becomes parallel to the Horizon, the two Sides AL, AK, coincide with each other, and the whole Plane falls into the Right Line AP, which is parallef to the Horizon, and ftrikes the Table in G; which is the Point of Sight.

Hither

[13i]

Hither tis, that the Lines CM and DN, the Perfpectives of CL andDK, do converge; fo that CG and DG, are the Perfpectives of the Parallels CH, DI, infinitet'). produc'd. All which is moft eafily demonftrated by the Prifm, after the manner that we, proceeded at Prop. IX. for upright Tables. Q.E.D.

PROP. XXXIX. THEOR.

The Perfpectives of all Lines parallel to the Ground Line, are parallel one to anotber; upon Inclin'd Tables as well as Upright ones.

Thas if the Line LK , be parallel to the Ground Line CD, we will demonftrate (as at Prop. XI.) that its Perfpective $\mathbf{M N}$; Thall alfo be parallel to CD ; and therefore; all parallel to one another; Q.E.D:

COROL.

Therefore all thefe Lines, are drawn upon Inclin'd Tables, after the very fame Manner as upon thofe that are Vertical:

$$
\left[\begin{array}{lll}
1 & 3
\end{array}\right]
$$

PROP. XL. THEOR.

The Perfpectives of Lines, Perpendicular to the Ground Plane, are to be drawn upon Inclin'd Tables, after a very different Manner, from what they are on upright ones.

For by Prop. XII. upon Vertical Tables, thefe Perfpectives, are all Perpendicular to the Ground Line, and confequently parallel to one another.

The Reafon of which is, becaufe the Vifual Planes, which are all perpendicular to the Horizon, being cut by the Plane of the Table, which is likewife perpendicular to the Horizon; their common Sections (ziz. The Perfpectives of the Lines, perpendicular to the Ground Plane) muft neceffarily, be all of them, perpendicular to the Ground Line of the Table.

But is can't be thus, when the Table is plac'd ftooping or inclin'd to the Ground Plane. For the Vijual Planes, which are all perpendicular to the Horizon, being cut by the Inclin'd Oblique Plane of the Table; will not make the common Sections or Perfpectives, perpendicular to the Ground Line; but inclining, and that in various Angles of Obliquity.

Nor

$$
\left[\begin{array}{ll}
133
\end{array}\right]
$$

Nor is there any more, than one Section only, of the Inclin'd Table, by a vifual Plane; wherein the common Section, is at right Angles to the Ground Line.
But one there is; which is, when the $V_{i j}$ fual Plane, cuts the Inclin'd Table at Right Angles. In this Cafe, the PerfpeCtive, of a Line perpendicular to the Ground Plane, will allo be perpendicular to the Ground Lize of the Table; otherwife not, as any Man may éafily fatisfie himfelf, from the common Principles of Geometry. Q.E.D.

PROP. XLI. THEOR. (Fig. 35.)

If ADBOp be the Plane of a Table, inclin'd to the Horizontal Plane DrOn; the Eye at C, its Height Cr, from whence a Perpendicular as rO_{O}, is let fall to the Ground Line DOp; Laftly, CB parallel to rn, or the Horizontal Plane, Ariking the Inclin'd Table in B: Ifay, that n being any vifible Point in the Ground Plane; if we fet of Op $=O n$, and $A B=C B$, and carrying up tbe Lime $O B$ from O ta B, join the Points A and p, with the right Line Ap, interfecting OB in c ; that then the Point c Jaall be the true Per ${ }^{\text {Ppective Seat, of the given Point }}$ n, in the Table.

$$
\mathrm{K}_{2} \quad \mathrm{CON}_{-}
$$

[134]

CONSTRUCTION.

From the Eye at C, draw Cs $\|^{1} \mathrm{Bo}$, as allo $\mathrm{AD} \|$ to the fame Bo , from the Point A. Draw the vifual Ray Cn, cutting the Table in the Point a.

DEMONSTRATION.

The Point a, is the natural Perfpective of the Point n, to the Eye at \mathbf{C}, upon the Inclin'd Table ; and by Prop. XXXVIII. this Point a is found fome where in ther Radiat Bo. Now I'll demonftrate that a is coincident with c, determin'd by the Interfection of the Lines A_{p} and $B o$, drawn afterthe Manner, as is exprefs'd in the Propofition.

The Triangles sCn, oan, are Similar ; Therefore, sn : on :: sC :oa.
Again, the Triangles ADp_{2} : ocp, are Similar;

Therefore, $\mathrm{Dp}: o p:: \mathrm{AD}: \mathrm{ac}_{3}$
But $s n=s o+o n=\mathrm{CB}+o n$ (becaufe of
 caufe of $f(\mathrm{~s})=$ Do top (Confruct.) therefore $3 n=p D$.

Again; $o n=o p$ (Confrkct.)
And $s C=B o$ (becaufe of Parallels) $=A D$ (becaufe of Parallels) therefore the Fourth Terms

[135]

Terms of the Proportions are refpectively equal, viz. oa $=0$.

Therefore the Points a and $\cdot c$, do coincide with each other on the Table.

That is, the Point c, determin'd by the Interfection of the Lines Ap and Bo, is coincident with a, the natural Perfpective of n, in the Ground Plane.
Therefore the Perfpective of the Point n, in the Ground Plane, is rightly determined, by laying off in the Grousd Line, $o p=o n$; and in the Horizontal Line; BA $=\mathrm{BC}$, and then drawing $A p$, to cut the Radial Bo in the Point c.. R.E.D,

S C H O L.

This Demonftration for Inclin'd Tables, proceeds exactly after the fame manner, with that generalone givenat Prop. IX. For Tablesperpendicular to the Horizon. All the Difference is; that the Line CB, is there perpendiciellar to the Table, and here oblique; which neceflarily arifes from the different Pofition of the Table in that Cafe and this: But in both Cafes it's parallel to the Horizon, and where it ftrikes the Table, (as here at B) determines the Poiat of Sight, if the Lines on, éc. are at Right Angles to the Ground Line Dp ; or otherwife, fome Agcidental Point.-

[136]

And thofe that will take the Pains to draw the Figure out, may accommodate the Demonftration to any Cafe; let the Line on, in the Ground Plane, lie (as it does here) paffing through the Foot of the Eye's Perpendicular Cr_{r}; or any other ways on either Side of the Eye. But indeed, the bare Infpection of the Fig. referr'd to at the foremention'd Prop. will be a fufficient Proof of the Univerfality of this Demonftration, for Inclin'd Tables, without any more ado..

COROLLARYI.

Hence then we have a Method of tracing out practically, upon any Inclin'd Table, the Perfpective Seats, of any given Pgint or Points, in the Ground Plane ; and confequenily of delineating the entire Scenographick Appearance! of any Object, upon fuch a Table.

C O R O L: II.

\therefore The Diftance BA in the Horizontal Line (which determines A, the Succedaneous Point of Diftance) being $=\mathrm{CB}=0 \leq=s r$ + ro; is therefore =the perpendicular Difance of the Spectator from the Ground Line, added to the Cotangent of the Tables Inclina-

$$
\left[\begin{array}{ll}
1 & 37
\end{array}\right]
$$

tion, the Eye's Height being the Radius. For the Angle $\mathrm{C} s=$ Bon, the Tables Horizontal Inclination.

Alfo ob, the Perpendicular Diftance, of the Point of Sight, above the Ground Line D_{p}; is the Co-Secant of the fame Angle: Which Remarks may be ufeful in Practice.

PROP. XLII. PROB. XVI.

Tp drawn apon an Inçlin'd Table, the PerfpeEtive of any Line, perpendicular to the Ground Plane.

How all Sorts of Lines lying in the Ground Plane, are to be drawn in Perfpective upon thefe Tables; we have fhewn already:- But how thofe which are raifed above the Ground Plane, are to be reprefented, is a thing of more Difficulty. I hall thew therefore, how we pay eafily and practically trace out upon a table, any how inclin'd to the Horizon, the Peripefpective, of any Line, which ftands erect on the Ground Plane: it being eafie from thence, to draw the Perfpectives of any Lines that are oblique thereto; as we have intimated before; in vertical Perfpective.

K. 4 . From

From the Foot of the Perpendicular, where it ftands in the Ground Plane, carry a Line of Incidence to the Ground Line of the Table.

On this Line of Incidence, imagine a Plane to be erected perpendicular to the Ground Plane ; by which Means, it will alfo be perpendicular to the Inclin'd Table; and its common Section therewith; will be at Right Angles to the Ground Line. This common Section, for Diftinction fake, I call the Perpendicular of the Table, and is reprefented in Fig. 35. by the Line Bo. Thro' the Apex or Top of the Perpendicular, conceive another Plane to be carried, parallel to the Ground Plane, whofe common Section with the Table, will be a new. Ground Line, and parallel to the former below.

Where the common Section of this H_{0} rizontal Plane, and the former Erefl one, cuts the Table, will be the nem Point of Incidenoe, for the Apex of the Perpendicular; whofe Diftance alfo, from the nem Ground Line, is that Part of the aforefaid common Section of the two Planes, which lies between the new Point of Incidence, and ${ }^{\circ}$ the A pex of the Perpendicular.

And thus, having the two Points of 1 ncidence, viz. for the Foot, and Apex of the Perpendicular; as alfo the Diftance of

[139]

each from its refpective Ground Line; we are only to determine (by the Help of the Rule demonitrated in the laft Prop.) the Perypective Seat of each of thefe Points) and fo join them with a Right Line; which will be the true Scenographick. Appeare ance, of the Perpendicalar propofed, upon the Inclining Table.

Now the Inclination of the Table, the Heigbt of the propos'd Perpendicular, and the Difance of its Foot, from the Ground Line, being all atually given; it's eafie to find, the Diftance of the Apex, from the new Ground Line, and whereabouts the nemp Point of Incidence falls in the Table.

For; Radius, to Co-fecant of the Tables Inclination, fo the given Height of the Perpendicular, to a Fourth; which is equal to the Segment of the Perpendicular of the Table, intercepted between \downarrow hePointsof Incidence, of the Foct and Apex of the Height pro:pos'd.

And as Radius, to Cotangent of the Tables Inclination, fo the given Height, to a 4th; which fuptracted from the Diftance of the Foot from the Ground Line; gives the Diftance of the Apex from the new Ground Line.

And after this, I believe there cannot be much Difficulty remaining, with Refpect to the Practice of Perfpective upon thefe forc of Tables.

The

[140]

The Inverfe Metbod of Perfpective.

Hitherto we have been converfant, about that Part of the Practice of Perfpective, which is very properly call'd the Direct; fince it is the Method of proceeding, from the Object it felf, to its Perfpective Appearance; fo that knowing the true Form and Pofition of the Former; we can immediately trace out the Latter on the Table.

The Inverfe of this, fhews how, by a retrograde Sort of Procefs, from the Perfpective given; to determine the Figure and Situation of the Original or Prototype: Which Method I fhall now exemplifie in fome few Problems, but fufficient to lead the Reader (who is well inftructed in the foregoing Practice) into all the Parts and Steps of this.

PROP. XLIII. PROB. XVII.

Any Point in the Perfpective Täble, being given; let it be required, to find its Original Seat in the Ground Plane. (See Fig. 15 . No. 2, 3.

Let O be a Point given in the Table; thro' which draw any two Lines at Liberty, which produce, till they cut the Horizontal Line, ex. gr. in G_{2} and D, and
and the ground Line in \mathbf{N} and M ; fo that the entire Lines themfelves, are DOM, and GON. From the Points D, G, let fall the Perpendiculars DF, GH, to cut the Ground Line in the Points F, H; and from B, draw the Lines BF, BH. Then from the Points M, N, draw the Lines MK, NL, parallel te BF , BH , refpectively; which interfect each other in I: I fay, that I is the true Original, of the Point O in the Perfeétive Table.

Otherwife thus. (Fig. 15. N•, 1.)
Let f be any Point in the Table, the Seat of whofe Original, in the Ground Plane, is required.

Draw a Line from B the Point of Sight, thro' the given Point f, till it cut the Ground Line in D; at D, erect DF perpendicular to the Ground Line; and having drawn a Line from the Point of Difatacee C , thro' f; produce it till it cuts the Ground Line, in E. In the Perpendicular DF , Set off $\mathrm{DF}=\mathrm{DE}$. Then will F be the Point fought.

The Demonftration of thefe Practices will be very eafie, to thofe that underftand the Reafon, of the Operations at Prob.I.

However, for the fake of thofe, that may defire to fee them demonftrated, Ifhall add the Demonftrations, and that of each Practice diftinctly.

DEMON-

[142]

DEMON. of the Firft Praltice.

The Lines $O G$ and $O D$, are drawn from the Point O, till they cut the Horizontal Line in G and D. And (by Conftraction) the Lines GH and DF, are Perpendiculars from the Points G and D , to the Ground Line EF.

Now by Corol. VI, VII. Prop. IX. all Lines in the Ground Plaze, parallel to BF, run.up-in the Perfpective Table, to the Point D ; as alfo thefe which are parallel to BH , converge to G .

But (by Confruct.) the Lines NL and MK, are refpectively parallel to BH and BF.

Therefore the Lines NL and MK in the Ground Plane, infinitely produc'd; are the Originals anfwering to the Perfpectives NG and MD.

Therefore the Point I, which is the Interfection, of the faid infinitely produc'd Lines NL and MK, is alfo the true Original, of the Point O in the Perfpective Table. Q.E.D.

DE M ON. of the Second Practice.

By Confrutt. the Line DF is perpendicular to the ground Line, therefore by Corol.

Corol. VI. Prap. IX. the Line DB, is the Perfpective of DF infinitely produc'd ; or vice ver $\{$ a, DF infinitely produc'd, the Original of BfD; and confequently the Original of the Point f, muft of Neceffity be fomewhere in the faid Line DF produc'd. But alfo fince \mathbf{C} is by Hypoth. the Point of Diftance, and the Points C, f, E, do by Conftruct. lie all in a Right Line; and moreover fince by Conftract. DF is taken equal to DE ; therefore by Prop. X. F is the true Original of the Point f in the Table, \&.E.D.

PROP. XLIV. PROB. XVIII.

Giving any Line in the Table, to determine its Original, in the Gromed Plane.

1. Let the Line given in the Table, be terminated both ways, viz. by the Horizontal and the Ground Line; ex. gr.MD.

From the Point D in the Horizontal Line, let fall DF perpendicular to the Ground Line, and interfecting it in F; then from B, the Foot of the Eye's Port pendicular, draw a Line to F; and from M (where the Line given cuts the grousd Line) draw MK at Liberty, paratlel to BF. I fay that the Line MK infmitely produc'd, is the true Original or Prosotype of MD in the Table.

The

$$
\text { [} 14.4 \text {] }
$$

The Demonftration is apparent, from what has been faid before.
2. Let the Line be terminated by the ground Line, and fome other Point in the Table; as ex.gr. the Line MO.
Having produced the given Line MO, till it cuts the Horizontal Line of the Table in D, and drawn DF, and BF, and MK, in that manner that was fhewn juft now; we have nothing to do, but only according to Prob. XVII. foregoing, to determine the Original of the Point 0 , or what Point in the ground Plane, belongs to \mathbf{O} in the Table. And having by that Means found the Point I, we have confequently, the Line MI, for the Prototype of MO.
3. Let the Line be terminated by the Horizontal Line, and fome other Point in the Table; as ex. gr. the Line DO.
Produce DO, till it cuts the Ground Line in M , and draw $\mathrm{DF}, \mathrm{BF}, \mathrm{MK}$, as before; then determining I (in MK) for the Prototype of O ; all the infinite Production of the Line IK beyond I , will be the true Original of DO.
4. Let the Line given in the Table, be terminated neither by the Horizonial, nor the ground Line; as ex. gr. the Line PQ.

Having

[145]

Having produc'd it both ways, till it cuts the Horizontal Line in C, and the ground Lise in \mathbf{R}; from \mathbf{C}, let fall $\mathbf{C E}$ perpendicular to the ground Line, and draw $B E$; then from R, extend the Line RL at liberty, parallel to BE; in which Line, the Points K , L , the refpective Originals of Q, P, may be determin'd (as by Prob. XVII.) and confequently KL, for the Prototype of the given Line PQ.

Or thus: Having drawn CE, BE, and RL, as before; take any Point in the Table, at Liberty, as 0 , and from thence carry two Lines at-Liberty, thro' the Extremities P and Q, producing them till they cut the Ground Line in \mathbf{M}, N, and the $\mathrm{Ho}-$ rizontal Line in D, G; from whence let fall the Perpendiculars DF, GH, and from B, draw the Lines BF, BH. Then from the Points M, N, draw the Lines MK, NL, at Liberty, parallel to BF, BH refpectively, which produce till they interfect the Line RL, in the Points KL. I fay, the Line KL is the true Original of $\mathbf{Q P}$.

$$
\text { [} 146 \text {] . }
$$

PROP. XLV. PROB. XIX.

Any Angle being given in the Table; to find an Angle in the Ground Plane, ta which the laid Angle iw the Tatle, is equal in Reprefentation.

Suppofe the Point P, was taken at $\mathrm{Li}=$ berty in the Table, through which were drawn the Lines PO, PQ, any how, fo that the Angle OPQ be formed; and it be requir'd to determine the Angle in the Ground Plane, to which the: fid Angle OPQ is equal in Reprefentation:
-The Lines containing the given Angles, Boing producd till they cut the Fiorizantal Line, in the Points G, C, and the ground $\mathcal{L}_{\text {ine }}$ in \mathbf{N}, \mathbf{R}; from the Points \mathbf{G}, \mathbf{C}, les fall the Perpendiculars GH, CE, each equal to the Eye's Perpendicular AB: Prom B draw the Lines BH; BE, to the Points Hiand E ; and from the Points: \mathbf{N} and R before determin'd in the ground Line, produce the Lines NI and RK, parallel refpectively to BH, BE, which interfect each other in the Point L. I fay that the Angle RLN, is the Angle fought, vis. That to which OPQ in the Table, is.equal in Reprefentation.

For from the Practices already demonftrated, we will Mew, that the Prototypes of $P O$, and $P Q$, are found in the Lines NI, RK produc'd, and confequently that the Angle of the Prototypes NLR, is the true Angle reprefented by OPQ in the Table,
s. C H O L.

After what has been demonifrated of the Practice of the- Inverfe Method of PerSpective, with refpect to Lines añd Angles; there can be no Difficulty remaining, how to extend the fame to Plane-Figures, or even to Solids themfelves. 'Tis true, that will be more laborious ; however, there are no new Rules, and 'twill be but a bare Repetition of the Work already done. Ex. Gr. If we were to compleat in the Ground-Plane, the Original of the Plane Figure OPQ in the Table.

Having determin'd the Angle NLR, anfwering to OPQ in the Table, find another Angle in the Ground Plane, equal in Reprefentation to fome other in the Table, ex. gr: to O, or Q.

Int take O for Example; and producing QO, till it cuts above and below in D and M , and drawing DF and BF as before; I produce MI, parallel to BF, which interfeets the Lines RL aad NL, before drawn,

[148]

in I and K, and fo cuts off the Figure IKL, for the true Prototype of Q QP.

And thus we have gone through all that is of grand ufe, either in the DireEF or Inverfe Practice of Perrpective; and I'll venture to .fay, That one who well underftands the foregoing Practices; with their Demonftrations, may fucceffively attempt any Problems whatfoever relating to either of them.

I thall conclude, with fome brief Ob fervations, upon a moft curious and ufefal Probletit in this Science, which, to the beft of my Knowledge, has never been fo much as tonched upon, by any of thofe who have written the moft Mathematicallj this way ; for notbing of this Kind, is ever to be expected from the common Mechanical Practitioners.

The Problem is this, wiz. Giving an Ob, jeCt in the Ground: Plane, with its Diftance from the. Table, cratere enarer (6)合: To find fuch a proper 'Diftasce of the Eye from the Table, that the Original or Prototype may be to its Perfpective on the Table (A rea to Area) in any given Ratio of Majority.

Note, I fay, in any given Ratio of Mbjority: For the Section of the Vifual: Pyrsmid on the Table, will ever be lefs, than its Bafis, in the Ground-Plane.

$$
[149]
$$

To folve this Problem, in one of the molt useful Cafes in Practice; will be as much I need do: Thole that have a mind to do is in more, may do it at their Leafure.

And though 1 have actually folv'd tome Cafes of this Problem Algebraically, yet I Shall not bring in thole Computations here; being refolved to use no other, but pure Geometrical Reafonings in this Treatife.
Suppofe therefore (at Fig. 6.) that the Object DE, being a Circle in the Ground Plane, it were requir'd that its PerfpeClive upon the Table GD, fhould be a Circle, and a Circle, whore Area should be to that of DE, in the Ratio of the Line \mathbf{N} to the Line M. wo th

The Height of the Eye is fuppofed to be unknown
the Line H .
But what is wanted, is that particular Diftance of the Eye from the Table; that. the visual Cone may not only be cut fubcon: trarily, by the Plane of the Table; but alto that the Section may be to the Bailiff; in the affigned Proportion, of N to M. Fer he

Without fuppofing any thing at all of the Circle, or the Confruction mention'd before at that Fig 6 ; well imagine the. Eye to pe at the Point F; being wholly ignorant at L_{2} whereat L_{2} where-

$$
[150]
$$

whereabout the Point F is, or how, far diftant from the Table. And therefore imagining the Vifual Rayes FE, FB , to be drawn, we'll fuppofe the Section fought for, to be CD.
Now $\odot \mathrm{DE}: \odot \mathrm{DC}:: \mathbf{M}: \dot{\mathbf{N}}$ (Hypothefis.) That is; $\mathrm{DEq}: \mathrm{DC}:: \mathrm{M}: \mathrm{N}$. But DEq : DCq :: FEq.: FDq (Subcontr. Section.)

And fuppofing a Perpendicular from the Eye to the ground Plane, viz. FB; a Line $=$ FD, will fall fome where on the other Side of it. Let that Line be FA.
Then DEq : DCq : : FE^{q} : FAq .
Becaufe BF (wherever it falls) is perpendicular to the Ground Plane, therefore it is parallel to the Table GD.
Therefore DFB = FDC.
But \quad FDC $=$ FED (Subiontr. Self.)
-Therefore DPB = FED.
But becaufe FA $=$ FD (Conftract.) and FB is perpendicular (Conftruct.) therefore. $A F B=D F B$, and $A B=B D$.
Therefore $A F B=F E D$.
Therefore the Angle AFE, muft be a Right one.

[15.1]

If fo, then it mult be $\mathrm{FEq}^{\text {a }}$ FAq: $\mathrm{BE}: \mathbf{B A}$.

But FEq : FAq :: M : N (Conftruct.)
Therefore BE:BA:: M:N.
But $\mathrm{BA}=\mathrm{BD}$;
Therefore BE ! $\mathrm{BD}: \mathbf{: ~} \mathrm{M}: \mathrm{N}$. And. $\mathrm{BE}-\mathrm{BD}: \mathrm{BD}:: \mathbf{M}-\mathrm{N}: \mathbf{N}$; That is $\mathrm{DE}: \mathrm{BD}:: \mathrm{M}-\mathrm{N}: \mathbf{N}^{*}$.

Therefore BD the proper Diftance of the Eye from the Table, is determin'd, QEF.

L3 A N

A N
 APPENIDX CONTAINING

A brief Account of fome Things, of Ule, in the ART
O.F.

PERSPECTIVE.
L_{4}
A \mathbf{N}

[$[155$]

A \mathbf{N}

APPENDIX.

I. Of Scenes for the Stage.

ATHEATRE painted according to the Rules of Art, appears a Regular Piece of Perfpective; when viewed from a certain Point. Nor are there any other Rules needful to the Underftanding, all the Mathematical Part of this fine Piece of Theory ; than only fome of thofe demonftrated in the foregoing Treatife.

I believe there is none that has written, both fo much, and fo curioufly upon this Subject, as the Famous Fefuit Andreas Pozzo, in his two Volumes of ArcbiteEture in Perfpective, efpecially the Second; which therefore, all that are defirous of being informed in thefe Matters, will do very well to confult. But there is enough in the First Volume, to let any Perfon, into the true Knowledge, vfe and Confrultien

[156]

of Scenes, who, together with thefe Rules, actually fees the Difpofition of all in a Theatre.

Here the Reader may find, the proper Dimenfions of the feveral Parts of a Theater; the Method of finding the Point of Sight therein, and the Diftance from

- whence it fhall appear a Juft Piece of Perfpective. Alfo how the Scenes are difpos'd and directed in their Grooves; what their proper Heights are ; how by knowing the Width between the nearest and farthest Grooves, the Length of the Theatre, or the Diftance of its Point, from the Edge of the Stage, may be found ; with various other curious and ufeful Practices relating to this Matter.

All which being fo amply and particulatly treated of, by the aforefaid Author; I fhall not need to enlarge on them here, but refer the inquifitive Reader thither, where he will meet with all the Satisfa. ction he can reafonably defire.
41. Whether more than one Point of Sighe only, be to be admitted in Pieces of PerJpective.

To anfwer this, 'cis neceffary that we diftinguifh, with the Excellent Author juft now mention'd.

[157]

'Tis one thing to fpeak in the Grofs, of any Work of large and great Extent; and another, thing, to fpeak of the feveral diginct Parts of that Work:
In the former Senfe, more Points of Sight, than one, are to be admitted.

In the latter, viz. When we fpeak of any particular Part of a Work, we ought to affign but one Point of Sight only; and to each feveral Part, its own proper Point.

Many Points of Sight introduc'd into the fame Piece, or where there is one fole entire Defign; would be more prejudicial to the Work, in many Refpects, than the making ufe of one only.

For whereas, if one only be made ufe of, 'tis then plain, that from fome one determin'd Point, a compleat and perfect Viem, may - be taken of the whole Peice; if feveral be introduc'd, then there is no one Point, from whence you can have a perfect View of the whole; but all that can be done, is to view each feveral Part of it, from its own próper Point.

Befides, good Painting, being but an Imitation of Nature; a Painter is not oblig'd to make his Work appear real, or as the very Life, from any Point; but from forme determinate Point only. Nor indeed is it poffible that he fhould do fo. For if this Picture ${ }_{2}$ ex.gr. upon fuch a Table, ba

[15^{8}]

an exaat Reprefentation of the Life; the Lifo it felf, and the Eye which draws it, being in this or that Pofition; 'ris ingollible that that fame Pitưre, fhould be an exact Reprefentation of the fame Life, as it appears to that Eye, which is now fhifted into a dew Place or Pofition.

In a Word; together with the Reafon of the thing, we may add this alfo; that one Point of Sight only, is to be found in the Performances of the greatest Mafters, when 'tis a fimple Defign, and the Work confifts bat of one Piece.
> III. How to avoid Confufzon, in fetting Plans or Elevations, in Perpective.

If when the Plan of any Figure is drawn . in Perfpective, it happens (thro' the 100 great Obliquity of the Vijual Lines). that the Parts of it are crouded too clofe together, and by that Means become confufed and indiftinct ; this may be eafily remedied, by making choice of a new Ground Line, farther diftant from the Horizontal Line, and fo drawing a frefh Perfpective Plan; which if not yet diftinet enough, the Space between the Horizon and the Ground Line may be ftill enlarg'd, and fa a new Plan drawn as before.

$$
[159]
$$

So likewife in Elevations, when by Reafon of too nearr an Approach to the Point of Sight, the Projectures of the feveral Altitudes, cannot well be diftinguifh'd and defign'd; the Remedy for this Inconvenience, is by fetting the Elevation at fome due Diftance, farther from the Point of Sight; in which Cafe, the Parts which before were confufed, by Reafon of the too great Obliquity, will now become more obvious and diftinct.
> IV. How deficient Figures, may be made to appear comipleat, or any Figures may be made to appear of other Dimenfions, than they really are; by the Help of Perfpective.

'Tis fuppofed here, that fome certain determinate Point is fix'd, from whence 'tis requir'd, that the Figures fhould appear compleat.

And the Perfpective Work being done ${ }^{\bullet}$ with Refpect to that one Point $; \cdot$ it's impoffible it fhould appear perfect, when view'd from any other Point but that alone.

Suppofe a Room were of fuch a Figure, as wanted only one Angle or Corner, of a true Square, and this Defect were to be remedied by Perfpective; and the Room which is now a Trapezium, were to be made

[160]

made appear from a certain Point as if would, if it had been really Square.

If the deficient Triangle, be painted on the Wall, adjoyning thereto, as it ought to be by the Rules of Peripeative, for the Eye in the Point affigned; I fay then, that if the Place be viewed from that Point, it will appear, as if it had been a true Square.

If any Space were to be made appear Longer or Broader, than it really is, according to any Meafure or Proportion affigned; this will be done by drawing according to the Rules of vertical Perfpective, on the Wall or Wainfooat, at the fartheft End, that Augmentation of the Area which is required.

As for Example, if an Area or Ground. floor were 40 . Foot long and robroad; and it were to be made appear (keeping the fame Width) as an Area of 60 Foot long: I fay, that if an Area of 20 Foot, be

- painted in Perfpective on the Wall or Wanfcoat (as a Table) according to the proper Distance, from whence it is to be view'd.s. that then to an Eye fix'd in that Point, it will appear as if the Space it felf were in reality fo much longer.-

The Reafon of which is moft obvious; for fince by the Suppofition, the defired Increafe of the Area, is drawn in Peripective, according to the due Height and Di-
ftance

[161]

ftance of the Eye, on a Table erected at the fartheft' End of the Space propos'd; that Piece of Perfpective will undoubredly appear to the Eye feated in its proper Point, juft as the defired Prolongation of. the Area it felf would have done, if it had been true and real. And confequently, the whole together, viz. the real Area of 40 Foot, and the Perrpective of the 20 ; upon the Wall; will appear, as an Area, of the real Dimenfions of 60 would have done.

If the feeming Increafe of Dimenfions were to be uppoards, inftead of long or broadspays; as if for Example, a Room or Entry, were to be made appear bigher than it really is: In order to this Effect, we are to confider the Roof or Cieling, assa Table, and. thereon to draw by the Rules of, Ho_{0} rizontal Per \int pective, the Reprefentation of what we wrould have, according to the intended Place and Seat of the Eye. . Nor can there be any manner of Difficulty in any Practices of this kind, when the Agree. ment between Horizontal and Vertical Perfpective, which we have demonftrated at Prop. XXXVII. is well confider'd.

By fuch like Artifices likewife (tho' not quite fo eafily, becaufe it is more difficule to draw Pieces of Perfpective accurately, upon Inclin'd Tables, thań upon Vprighs

Ones)

[162]

Ones) may Inclining or Reclining Walls, be made to appear Erect ; and that painting on the faid Walls, the true Scenographick Appearances, of thofe Parts of the Areas, of the Roof or Floor, which are deficient or redundant, from, or above, what would be taken in, by a true Perpendicular Pofition. For when a Wall Inclines, the under Pavement or Floor, is greater than the Cieiling; when it Reclines, 'tis lefs; when Erect, both are equal.

V. Of Lights and Shaddows.

Befides the rigorous Mathematical Part of Perfpective, which Thews upon demonftrative Principles, after what Manner the Outlines of Bodies are to be reprefented, or drawn upon a Table, for any given Height or Diftance of the Eye; there is another, relating to the apt Diftinction of Lights and Sbaddores: Which depending much upon Nature and Obfervation, one may call (not improperly) the Pbyfical Part of Per(peEtive. 'Tis the Perfection of this Skill, that mainly furprizes in all Performances of this Kind. A juft Mixture of Lights and Shaddows, without accurate defigning, would not indeed pleare a \mathcal{F} udge in thefe Matters ; but the beft Defign in the World, with unnatural Lights and Shaddows; would

$$
[163]
$$

would fcarce pleate any Body. It's lefs eafie for a Fault (that is any thing grofs) to lie concealed in this Part, than it is in the other ; which is concern'd only in the drawing the Projection of Lines. For a Fault here, is a Fault againft fenfible Nature, which every one that obferves, is a Judge of; but there, it is againf Mathematical Demonftration, which few are converfant with.

How fhocking would it be, to fee in a Picture, a very, deep and frong Sbaddow, together wish a dark and ctoudy Skie: Or the Lights let in, on the fame Side, that the Shaddows fall of; when every Body knows, that the Light muft neceffarily come on the contrary Side!

Thefe are Blunders which would eafily be corrected by thofe, that might not be able to tell, whether fuch and fuch Lines were rightly directed to their proper Point in the Picture, or no; or whet Jer fuch a Column, or Tree, were aptly difpos'd, and of its just Height and Form.

However, it may be ufeful to obferve in thefe Cafes, that befides the Part or Quarter, from whence the Light comes; the Quality and Kind, the Altitude and Difance of the Lights, and the Manner of the Illumination, is to be regarded.
M.

It's

[164.$]$

It's one thing, to reprefent Bodies as enlightned by Torches or Candles, and ancther, as by the Sun.

Again, Things that are in the open Air, are not enlightned after the fame Manner, as thofe that receive the Light, only thro' a Hole orWindow.

Nor is an Object enlightned by feveral Luminaries, after the fame manner, that it is by one alone. Nor when it is enlightned by a Reflex'd.or Reverberated Light, is it to appear with that lively Brightnefs; as when it is expos'd to open and direct Ra diations.

All thefe are to be confider${ }^{2}$ d, before a Man attempts to exprefs the Effects of Illumination in a Picture. It's certain, for Example; that the nearer the Lucid Body is, by fo much the more Divergency have the Rays of Light; and the farther, by fo much the more do they approach, to a fenfible Parallelifme. And therefore Illuminations by Lamps, and fuch like very inear Luminaries, are to be exprefs'd Scenographically; in fuch a Manner, that the Sbades fhould be more plentiful, than the Lights. Whereas thofe which are caus'd by the direct Rayes of the Sus, are to be defign'd Ortbograpbically, fo as that the Lights and. Shades fhould be equally diftributed aboutIn like Manner, fould the Pofitions, AL-

[165]

titudes and Distances of Luminaries, be confider'd, in Order to give Shaddows, their due Form, Proportions and Dimenfons. Not forgetting the Effects of /everal Lights conjunctly illuminating a Body, whereby the Shaddow becomes fainter and more dilute, than when it is projected by one fingle Light alone; except where the Shaddows happen to interfect, one another ; for there, viz. at the common Section, she Shade is always intenfe and deep.

Shaddows are of no lefs Ufe, in all the Arts of Imagery and Reprefentation; than they are to the Purpofes of Astronomy and Geography; where they ferve to evince ${ }_{a}$ fome of the moft important Conclufions in both Sciences.
'Tis by thefe that we are fometimes led into Delufions, that are infinitely pleafant and agreeable to us. We miftake a little Paint, for Life and Reality; think a flat Superficiés, fometimes to be a raifed folid Body, and at other times to be hollow and depreffed.

And fo very fine and artful, are fome Impoftures of this Kind, that 'tis almoft impoffible for the beft Judges to find them out; pure fudgnent without particular $A c$. quaintance and Experience, being not fufficient to correct the Errors, we run into upon fuch Appearances.

[. 166]

It won't be amils to take Notice here, that there are fome Cafes, wherein, without particular Conffderation and Regard, had to the falling, both of the Lights and Shaddows; we are forc'd to remais in abfolute Sufpence about the true Form and Figure of a Body, whether it be Concave or Convex; really bolo low and funk in, or elfe elevated and Protuberant : And this upon the Score of a real Ambiguity that there is in the Appearance; fince the Body, which is thus reprefented, may be either Concave or Convex; and it is to be determin'd only from the Lights and Shaddows, which of the two it is.

Thus for Example; fuppofe there is a Roand drawn, and Joeded on one Side.

I am fure by the Shade, that it cannot poffibly be a Flat, or a meer Circular Area, which is thus reprefented, but a Solid; but then whether it be Hollow or Cibloans, I cannot yet tell, without farther Confideration. But obferving how the Shaiddow is drawn, and at the fame time knowing on which Side the Light falls; I can eafily determine the Matter.

For if the Light falls on the Right Side (for Example) and the Picture be haded on that fame Side ; I know then, that it mult neceflarily reprefent.a Consave: But if the Shade be on the oppofite Side, to that on which the Light comes ; I am fure it muft exprefs
exprefs a Convex. For thus the Appearances would be, if a Solid, and a Hollow Hemifphere, were to be expos'd to the Light: The Protuberance of the former, would make it enlightened, and the finking in of the latter, would make it fhaded; on the fame Side that the Light falls.

I need fay nothing here, how the Fi gures, of the Shaddows of Bodies, are to be determin'd Mathematically. For I have fhewn already, at Schol. II. Prop. XXXIV. that this Practice, is only the Inverfe, of the Ordinary Perfpective, and may be per. form'd by the Rules.

However, thofe that pleafe, may make ufe of the common Method; by drawing Lines from the Light, and from the Foot of the Perpendicular, let fall from the Sight, to the Ground Plane; which is in Effect the very fame Method ftill.

Thus at Fig. VII. Prop. VII. If the Rettangle APBN, were an Opake Body, whofe Shaddow were to be determin'd; the Light being at K, and its Altitude $K V$. The Lines KA, KB, extended from the Light, thro' the Angles A, B, and produced to meet in D, E, the Lines VP, $\mathbf{V N}$, drawn from V, thro' the Angles \mathbf{P}, \mathbf{N}, in the Ground Plane; determine the Sbaddow PDNE: Which is alfo a Piece of ordinary Perfpective, in which DP, EN, M3 $\quad \cdots$ are

$$
[168]
$$

are Radial Lines running up to the Point of Sight V ; as we have demonftrated at Prop. XXXIV.

VI. Of Pittares in Pidure's.

Whenever any Picture is reprefented as drawn in another Picture; the Reprefentation ought to be, according to the View, of the real Spectator, who fees the first Pieture with that fecond Piture in it; and not according to the View of any Perfon drawn, in the firft Piture, who is imagin'd to be a Spectator of the fecond.

Thus for Example, fuppofe a Perfon were to paint Apelles, drawing the Picture of Alexander the Great. He ought not in his Peice, to exprefs the Picture of Alexander, as Alexander appear'd to Apelies, or according to Apelles's Veiw ; but according to his own proper Image or Idea.

And the Reafon is plain. For that Image of Alexander, which is a Copy to Apelles; is an Original or Archetype, to our Painter: And confequently ought to be exprefs'd by him, according to his own Idea.

And from hence a Judgment may be made (by thofe that are skilful this way) of the Defects or Perfections of many pompous Peices, wherein Reprefentations of this Kind are made.

And

And thus I have faid, what I propore to fay of thefe Matters here.

I had defign'd in this Treatife likewife, 2 particular Account of Military Perfopctive, or that which is made ufe of in the defigning of Fortifioafions: But this Sort of Perfpective, depending upon quire different PAnciples, from what the Common does; ought to be explain'd and illuftrated, with Examples, by it felf; which perhaps it may be, in another Place.

I Thall here, at the Clofe of what has hitherto been faid, of Direet Vifion, fubjoin one Problem, relating to Refrized and Reflected Vifion.

I have formerly fhown in another Place, [viz. IeNSTITVT. FLUX. Prob. 15.] how the Foci may be determin'd, for all Sorts of Glaffes, of what Figure foever they are; receiving, either parallel, Diverging or Converging Rayes; and that by the Help of owe Geveral Equation, to be interpreted according to the particular Nature of each Curve: Which Method, I have fince improv'd, in more Refpects than one.

But what I intend here, is of a quite different Nature, viz. a Geometrical Confruction ; or an eafie and accurate Method, of tracing the Progrefs of a Ray by Scale and Compsfs; and which I think to be';different,

[170]

from what I have feen, relating to this Matter.
Let MN (Fig. 38.) be fome Refracting Circular Surface, denfer than the ambient Medium; G the radiating Point; GAH the Axis produc'd thro' the Centre at Li berty; GNDP, the Incident Ray, produc'd at Liberty; AN drawn from the Centre A, to the Point of Incidence N.
Upon N, with the Jame Radius NA, ftrike an Arch AC; and from A, let fall AD, perpendicular to the Incident Ray ND, which produce till it cuts the Circle again in C; and draw NC.

The Quantities m, n, denoting the Proportion of the Sines of the Angle of Incidence and the Refractpd Angle, make NP:NC::m-n:n, and join PC. Let NQ Biféc the Angle PNC, and cut PC in Q; from whence let fall QB , perpequt dicular to DC.

Taking the Lexgth of BCo in the Compaffes, ftrike an Arch therewith upon the Centre of the Refracting Surface A

Laftly, upon AN, as a Diameter, defcribe a Semi-Circle, cutting the foremention'd Arch in F .
I fay, that laying a Ruler from N to F; it hall cut the Axis, in the Point H, which is the Focus fought: Or which is the fame thing, the Line NF produc'd, is the true Refracted Ray.

The

The Demonftration of which Conftru. Ction, is as follows.

Becaufe AD is perpendicular to GN in D , therefore $\mathrm{CND}=\mathrm{AND}=$ the Angle of Incidence; and fo CD is the Sine thereof.

Farther, becaufe PN : NC::m-n : n, and the Angle PNC is bifected; therefore alfo $\mathrm{PQ}: \mathrm{QC}:: m-n: n$.

But fince $Q B$ is perpendicular to $A C$, from thence N andi $B Q$ are parallel;

Therefore PQ:QC:: DB: BC,
Therefore DB: BC:: $m-n: n$,
Therefore DC: BC::m:m,
Therefore CB is = the Sine of the Rofracted Angle.

Farther; becaufe the Point F is determined by the Interfection of the Circle AFN, with the Circle whofe Radius is $工 \mathrm{BC}$; therefore it's evident, not only that $\mathrm{AF}=\mathrm{BC}$, but alfo that the Angle AFN is a Right one, or AF perpendicular to FN.

Therefore NF is the true Refratted Rays and H the Focus.' R.E.D.

Thofe that have a Mind to it, may inveftigate the Focal Diftance, after the following or fome fuch like Manner; having the Angle of Incidence, the Radius

$$
\left[\begin{array}{llll}
1 & 7 & 2
\end{array}\right]
$$

dius of the Surface ; the Diftance of the Radiating Point in the Axis from the Vertex of the Surface, and the Ratio of Refraction, all given.

Imagine (it being omitted in the Figure). a Perpendicular, let fall from the Point of Incidence N , to the Axis in R .

In the Right Angled \triangle^{1} AND, there's AN and AND, given; whence AD and ND are given. Alfo MG being given, \therefore AG, and GD ($\left.=\sqrt{-} \overline{\mathrm{AG}^{q}}-\mathrm{AD}^{9}\right)$ are given. \therefore alfo GN($=$ GD-ND
 given. By Similar $\triangle^{1 s}$ GA : AD :: GN : RN, which is therefore given. Again, by Similar $\triangle^{\text {ts }}$ GA : GD :: GN : GR, which is therefore given. Therefore, $\mathrm{GA}-\mathrm{GR}=$ $A R$, is given alfo.

Liafly, The $\Delta^{1 s}$ RNH, AFH are Similar, therefore NR:RH::AF:HF, that is, $\mathrm{NR}: \mathrm{RA}+\mathrm{AH}:: \mathrm{AF}: \sqrt{\mathrm{AHq}^{-}-\mathrm{AFq}^{9}}$ whence $\mathrm{NR}^{q} \times \mathrm{AH}^{q}-\mathrm{NR}^{q} \times \mathrm{AFq}^{q}=\mathrm{AFq}^{q}$ $\times \mathrm{RA}^{\mathbf{q}}+\mathrm{AF}^{q} \times{ }^{2} \mathrm{RA} \times \mathrm{AH}+\mathrm{AFq}^{\mathbf{q}} \times$ AH^{9}, which gives but an Adfected Qua: dratick Equation, for the finding of AH the Diftance of the Focus, from the Centre of the Refracting Surface. R. E.I. Note 1. That this Confruction and Inveftigation, fuppofe nothing of the Rayes falling near the Axis of the Refracting Surface,

$\left(\begin{array}{c}\text { OFIV. } \\ \text { OF } \\ \text { MI }\end{array}\right.$

\square

1

1
\checkmark
-

$$
\bar{\sim}
$$

$$
\because
$$

总

$2!$

.75
'
an

m^{*}

2

[173]

face, but proceed all one, whether nearer or further off.
2. The Refracted Ray becomes either paratiel (to the Axis) or Convierging, or Diverging, that is, the Focus, is at an In finite, Finite, or more than' Infinite Diffance, according as the Angle EAF, is equal, more, or $l e f$, than a Right one.
3. If the Curve MN were any other befidesa Circle; its Property being given; by the Methods of Tangents, we can draw a Line, as AN perpendicular to the Curve, at the given Point of Incidence N ; and then proceed as before. So that let the .Curvature, be what it will, the Concourfes of the Rayes as Refracted thereby, may be Practically and yet Geonetrically trac'd out.
4. This Conftruction may eafily be apply'd to any Sort of Reffecting Surface, as well as to Refratting ones; the Quantities m, n, which before were in the Ratio of the Refraction, being now put equal one to another.

$$
\begin{array}{lllll}
F & I & I & I
\end{array}
$$

Advertifements.

THofe Gentlemen and others, who are willing to be Inftruated in the Curious Arts of DRAWING and DESIGNING, may receive all the Satisfation they defire therein, from Mr. BERNARD LENS, Semior, Drawing-Mafter to CHRIST's HOSPITAL, who Lives in Globe Court, in Sboe-Lane, the End next FleetAtreet; and, of whofe Abilities and ready Method in Teaching; the fine Performances of the Boys of the faid Hofpital, are (amongft many other Inftances) fufficient Teltimonials.

Humpbry Dittos.

*** S. ANDREA POZZO's Architeture in PER. SPECTIVE, and M. CLAUDEPERRAULT's Five Orders of Columns; are both Sold, by Mr. Fobn Sturt, Engraver, in Golden-Lion-Court in AlderfgateStreet, London.

Fuff Publifb'd,

AN Effay towards a Practical Englifh Grammar, defcribing the Genius, and Nature of the Englifb Tongue; giving likewife 2 Rational Account of Grammar in General, with a Familar Explanation of its Terms. The Whole is fo order'd, that any Gentleman or Lady may attain not only to a tolerable Knowledg of Grammar, and the Englifh Tongue, but be alfo enabled to Examine their Children in the Firf Principles of Grammar; By fames Greenviood. Sold by S. Keeble, at the Turks Head in Fleetfireet; F. Lawrence, at the Angle in the Poultrey; \mathcal{F}. Bojer at the Rofe in Ladgateftreet; R. and F. Bonwoick, at the Red Lyon in St. Paul's ChurcbTard; and R. Halfey, at the Plow and Harrow in Cornbil; and G.Woodward, in Scalding Alley near Stocks Market.

