14.

$$
x^{2}
$$

- 1

Digitized by the Internet Archive in 2018 with funding from Getty Research Institute

https://archive.org/details/practiceofperspe00high

THE

P R A C T I C E

OF
 PERSPECTIVE,

On the PRINCIPLES of

Dr. BROOK TAYLOR:

I N

A feries of examples, from the moft fimple, and eafy, to the moff complicated, and difficult cafes.

In the courfe of which, his method is compared with thofe of fome; of the moft celebrated writers, before him, on the fubject.

Written many years fince, but now firft publifhed, By JOSEPH HIGHMORE.
LONDON,

Printed for A. Millar, and J. Nourse, in the Strand. MDCCLXIII.

THE

P R E F A C E.

THERE are, already, fo many treatifes on perfpective: that perbaps it may feem needlefs to add to the number; and it might jufly be thougbt impertinent to offer any. thing to the public, on this fubject, after Dr. Brook Taylor; unlefs. the end propofed were different from bis, and confequently different means neceffary.

He bas invented, and, in a very fort compafs, exbibited an: univerfal theory; the truth, and excellence, of wobich is acknowledged by all who bave read, and confidered it, at the fame time that they complain of its obfcurity. The attention, and application wobich the reading, and underftanding:this little book require, efpecially with fuch as are but little converfant in geometry, bas difcouraged the generality of thofe, for whofe fervice it was. cbiefly defigned, from the attempt; , So that very ferw bave profited by the beft treatije that has been publifed on the fubject.

It was firft printed in 1715 , and again in 1719, with fome difference, in order to render it lefs difficult, objections baving been. sade to the former edition,, on account of its intricacy: neither of the impreffions is entirely fold, if we are rightly informed *. But. though this author bas been fiudied by few, yet with thefe be is in the bigheft. effeem, as the.inventor of the true univerfal fyfem.

Now if that, (the moft excellent of all books on the fubject,), has been liable to Juch objections, as to make the labours of later

[^0]writers, on the fame principles, acceptable to the public, the author bopes that tbis tract (the firft written after Brook Taylor's, as he bas reafon to believe, thougb laft publijwed) will be received with candour: And efpecially becaufe, though bis defgn, in general, be the fame with theirs, bis manner of treating the fubject bas been very different, as be had conceived it might be more naturally adapted to the comprebenfion of learners, for whole ufe it was principally intended.

His purpofe, and endeavour, bas been to give the fureft, and florteft rules for reprefenting all Sorts of objects, and this, in a popullar, familiar manner, without conftant frict mathematical demonffrations; although illuftrations, and even demongtrations, are not omitted, where they bave been thought neceffary.

He bad, originally, intended to fupply only what was wanting in the old perpective, which might bave been acceptable to thofe already experienced in the art, but would bave been wholly uselefs to otbers. And fince many bave been difourraged from the ftudy, by bearing of the deficiency of the old metbod, and the diffculty of comprebending the new, be judged it better to make bis work as complete in its kind, as be could; fo as to enable any one, with a common application, to reprefent objects, in all pofible fituations, with the ferwef lines that the nature of the thing woill admit, and without the aflytance of any other book.

With this view be bath, in the firft part, given a fewe examples in a manner commont to the old, and new fyfem, and bas endeavoured to explain even this as clearly, and comprebenfively as poffible, both to render it eafy to the learner, and alfo to prepare bim more effectually for the other method.

In the fecond part, objeets are reprefented in both methods; feparately, to flew the advantage of the new, not only where the old is falle, but alfo where it is incumbered with unneceffary lines, and points, for want of the true, wniverfal principles: here, examples are taken from Pozzo, and the Jefuit, the two mof celebrated, and mof fudied autbors; as alfo from. A. Boffe, an

$\begin{array}{lllllll}\mathbf{P} & \mathbf{R} & \mathrm{E} & \mathrm{F} & \mathrm{A} & \mathbf{C} & \mathrm{E}\end{array}$

old French writer, by fome, much efteemed, from whom the Jefuit has borrowed, with proper acknowledgment to the merit of Monf. Defargues, on whofe principles Boffe profefles to bave written. And in the courfe of this part, Several miftakes of thefe authors are remarked.

This fecond part may be confidered as a comparative perfpective, and will be acceptable to thoje who are already acquainted with. mof of the methods of projection, though they may not bave taken the pains to make fuch comparifon; but it is principally defigned to here the great advantages of the new metbod, and to excite the fudents, in this fcience, to render themfelves mafters of it; which, although it may require more application at firf, will enable thenn, afterwards, to execute whatever they undertake with more certainty, and expedition, than any other.

Thofe whofe curiofity may not detain them to examine the feveral fchemes of this fecond part, may pafs directly from the firft, to the third part; wherein the five regular folids are projected; which examples are chofen, as furnibing occafion for almoft every cafe that bas any difficulty, in perjpective; injomuch, that whoever fully comprebends the diagrams, -and can project thefe objects, will (it is apprebended) find the projeEtion of all otbers eafy.

In this, and the following parts, are many things which the author prefumes are entirely new, at leaft, be bas never met with them elferwhere.
The learner, bowever, is advifed, not to content bimfelf with a mere infpection of the diagrams, nor even with performing the problens as bere exbibited, only, but to projeet the fame objects in various fituations, till be finds bimfelf perfeet both in the principles and praEtice; he is atso advifed, to begin thefe operations with a fmall diffance, that fo all, or moot, of the varijping points may be found witijin the limits of bis paper; but when be foall bave acguired a facility in the execution, be may take what diftance be pleafes, and if any aiffculties arife, on that, or any other circumftance, be will find in the next,

And fourth part, expedients for them, this being the place frequently referred to, in the course of the treatife, for obviating Several inconveniencies that may happen from want of Space, as well as for many other Schemes, of great utility in practice; the fe were referved for this part on purpose, that the learner, by baying gradually advanced thus far, might be more fenfible of their usefulness, and fo apply bimelf with the more eagerness, and pleafure, to comprehend them.

The fifth, and laft part, treats of the manner of finding the Juadows of objects on divers planes, and the images of objects int reflecting planes, but briefly, as being of le ss use than the formet parts, which are absolutely neceffary. Both fadows, and reflections, are wholly omitted by Bozo, though fo great a mafer. in the practice of perspective. The Jefuit has examples of Sbadown cast on planes, but is Arangely miflaken in Some of them, as well as in the precepts with which they are accompanied, as is sewn, where they are particularly mentioned.

ADVERTISEMENT.

As the Author was near fixity miles from London, while this Work was printing, it is hoped the following errors of the pref will be the more eafily excufed: And the Reader is particularly defired to correct them, with his pen, before he begins the book, becaufe the fimalleft errors, in thefe Subjects, perplex the fenfe, and in come cafes entirely pervert it; efpecially where letters of reference are miftaken.
Page Line ERRATA.
8

5 ——— after the words; of this vanishing line, infert, Then
19 after 3,2,10, make a full fop, and then read, $A s$
${ }_{14}$ from the top, the for lat letter in the line, for B, read B,

[ix]

THE

INTRODUCTION.

SINCE the completion of this treatife in the order propofed, it has been thought proper to prefix a few of the firft principles of geometry, to facilitate the progrefs of fuch readers who may not have been converfant in thefe ftudies.

Definitions from Euclid's Elements.

Fig. 1. A point is confidered as having no parts, as A.
2. A line is confidered as having no breadth, as A, B.
3. The extremities of a line are points.
4. A right (or ftraight) line, is that which lies equally between its points, or is the fhorteft that can be drawn from point to point, as A, B, fig. 2.
5. A fuperficies is that which hath only length and breadth, without depth, or thicknefs, as A, B, C, D, fig. 3 .
6. The extremes or ends of a fuperficies are lines.
7. A plain fuperficies is that which lics equally between its lines.
8. A plain angle, B, A, C, is an inclination of two lines in a plane to each other; as A, B, and A, C, the one touching the other, as in the point A, fig. 4.
N. B. The fecond, or middle letter, is always the angular point.
9. When the lines which contain the angle are right (or ftraight) lines, it is called a right-lined angle.

If both be curved, it is a curve-lined angle; if one be curved, and the other right, it is a mixed angle.

X
 The INTRODUCTION.

Fig. io. When a right line, as A, B, ftanding upon a right line, as C, D, makes the angles on each fide equal, then both of them are right angles, and the right line $A_{2} B$, is called a perpendicular to C, D_{2} fig. 5 .
in. An obtufe angle is that which is greater than a right angle, as E, B, C, fig. 5 .
12. An acute angle is that which is lefs than a right angle, as E, B, D, fig. 5 .
13. A circle is a plain figure comprehended by one line, which is called a circumference, to which all right lines drawn from the point in the middle of the figure (called its center) are equal, as $\mathrm{C}, \mathrm{A},-\mathrm{C}, \mathrm{B},-$ C, D, fig. 6 .
14. The diameter of a circle is a right line, as A, B, drawn through the center C , and being terminated by the circumference, on either fide, divides the circle into two equal parts.
15. A femicircle is contained by the diameter, and half the circumference, as A, D, B, fig. 6 .
16. Of trilateral, or three fided figures, that which hath three equal fides, is called an equilateral triangle, as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, fig. 7.
17. That which hath only two fides equal is called an ifofceles triangle, as A, B, C, fig. 8.

I8. And that which hath all the three fides unequal, is called a fcalenum, as A, B, C, fig. 9.
19. But that which hath one angle right is called a right-angled triangle, as A, B, C, fig. 10 .

And the fide oppofite to the right angle is called the hypothenufe, as A, B.
20. Of quadrilateral figures, the fquare is that which hath the four fides equal, and the four angles right, as A, B, C, D, fig. ir.

21 . An oblong, or long fquare, is rectangled, but not equilateral, as A, B, C, D, fig. 12.
22. A rhombus, is a figure eguilateral, but not right-angled, as A, B, C, D, fig. 13 ,

Fig. 23. A thomboides, hath the oppofite fides and angles equal, but is neither equilateral, nor right angled, as A, B, C, D, fig. i4.
24. All other quadrilateral figures (being irregular) are called trapeziums, as A, B, C, D, fig. 15 .
25. Parallels are right lines in the fame plane, which being infinitely prolonged on both parts, would never meet, as A, B and C, D, fig. i6.
26. A parallelogram is a quadrilateral figure, whofe oppofite fides are parallel, as A, B, C, D, fig. 12 , and 14 .
27. When in a parallelogram, as A, B, C, D, fig. 17. there is drawn a diameter (or diagonal) A, C, and two right lines G, H, and F, E, parallel to the fides, cutting the diameter in the fame point I, fo that the parallelogram be divided into four parallelograms, thofe two, I, E, D, H, and I, F, B, G, through which the diameter doth not pafs, are called complements, but the two others, I, E, A, G, and I, F, C, H, through which it doth pafs, are faid to be about the dia meter.

Some Propofitions from the firft, fecond, third, and fixth, books of Euclid's Elements.

PROP.I. PROBLEM.

Upon a given right line A, B, (fig. 18,) to make an equilateral triangle $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

On the center A , at the diftance A, B, defrribe the circle $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and on the center B , at the fame diftance B, A, defcribe the circle $\mathrm{A}, \mathrm{C}, \mathrm{E}$, and from the point C , where the circles interfect one another, draw the two right lines C, A, and C, B. Then $\mathrm{A}, \mathrm{B}, \mathrm{C}$, will be an equilateral triangle.

For A, C, and C, B, are each equal to A, B, by conftruction.
PROP.IX. PROBLEM.

To divide a given right-lined angle B, A, C, (fig. 19.) into two cqual parts.
xii The INTRODUCTION.
Let there be taken, in the line A, B, a point at pleafure, D, and on A, C, cut off A, E, equal to A, D, (by fetting one foot of the compaffes on A, and with the other defcribing the arc D, E;) draw the right line D, E, and on it make an equilateral triangle D, F, E, and draw A, F, which will divide B, A, C, into two equal angles. Or the points D, and E, being found, the right line D, E, may be omitted; and inftead of whole circles (as at the firf Prop. fig. 18.) only mark the interfection at F, as in this figure.

PROP. X. PROBLEM.

To divide a given right line A, B, (fig. 20.) into two equal parts. Euclid directs here alfo to make an equilateral triangle A, C, B, on the given line, and then to divide the angle C , as in the laf propofition; that is, by means of another equilateral triangle below the line; but if the angular points above and below are found by interfection, it is fufficient.

$$
\mathbb{P} R O P . X I . \quad P R O B L E M .
$$

On a given right line $A, B,(f i g .21$.) and from a given point therein C, to raife a perpendicular C, F.

In the part C, A, take any point D, and let C, E, be taken equal to C, D; then, on D, E, defcribe the equilateral triangle D, F, E, and draw C, F, which will be perpendicular to A, B.

To raife a perpendicular at the end of a line A, D, fig. in. With any opening of the compaffes A, D, defcribe the $\operatorname{arc} \mathrm{D}, e, f$, and with the fame opening the arc D, e, and again with the fame opening e, f; laftly, with the fame e, g, and f, g, now draw g, A, which will be perpendicular to A, D.

PROP. XII. PROBLEM.

On a given right line A, B, (fig. 22.) and from a given point C , which is not in it, to draw a perpendicular line C, F.

Let any point H, be taken on the other fideof A, B, and from the point C , as a center, at the difance C, H, defcribe the circle $\mathrm{D}, \mathrm{H}, \mathrm{E}$,

cutting A, B, in the points D, and E, and divide D, E, into two equal parts in F, and draw C, F, which will be perpendicular to A, B.

PROP. XIII. THEOREM.

When a right line E, B, (fig. 5.) falls on another right line C, D, either it makes two right angles, or two angles equal to two right angles.

DEM. For if the angle E, B, D, be equal to E, B, C, they fhall be both right angles; but if it be unequal, let A, B, be drawn at right angles to C, D, then A, B, D, and A, B, C, fhall be right angles. Now fince E, B, D, and E, B, A, (taken together) are equal to the right angle A, B, D, if the common angle A, B, C, be added, then the three angles $E, B, D,-E, B, A$, and A, B, C, fhall be equal to the two right angles A, B, D, and A, B, C. And fince the angle E, B, C, is equal to the two angles E, B, A, and A, B, C, if you add the common E, B, D, the two angles E, B, D, and E, B, C, thall be equal to the three angles $E, B, D,-E, B, A$, and A, B, C. But thefe three have been fhewn to be equal to two right angles; therefore E, B, D, and E, B, C, fhall be alfo equal to two right angles. Which was to be demonftrated.

PR O P. XXII. PROBLEM.

To conftitute a triangle F, G, K, (fig. 23.) of three right lines equal to three given right lines A, B, and C.

Draw an indefinite right line D, E, and on it make D, F, equal to $A,-F, G$, equal to B, and G, E, equal to C; and from F, as a center, with the length F, D, defcribe a circle D, K, L : again, from the center G, with the length G, E, defcribe the circle E, K, L, and draw F, K and G, K; then the triangle F, G, K, is made of three lines equal to A, B, and C.

> PROP. XXIII. PROBLEM.

On a given right line A, B, (fig. 24.) and at a point given, A, to make an angle F, A, G, equal to a given angle D, C, E 。

Set one foot of the compaffes on C , and with the other foot, at any diffance, defcribe the arc E, D; then, with the fame opening, fet one foot on A, and defribe the arc G, F. Take, with the compaffes, the diffance D, E, and fet it off from G, to F, and draw A, F; then the angle $\mathrm{F}, \mathrm{A}, \mathrm{G}$ will be equal to $\mathrm{E}, \mathrm{C}, \mathrm{D}$.

PROP. XXXI. PROBLEM.

Through a given point A, (fig. 25.) to draw a parallel to a given right line B, C.

From A, draw an oblique line A, D, to the line B, C, and from D, with the diftance D, A, defrribe the $\operatorname{arc} \mathrm{A}, \mathrm{B}$; then from A , with the fame diftance, defcribe the arc D, E, make D, E, equal to A, B, and draw A, E, which will be parallel to B, C.

PROP. XXXII. THEOREM.

Of every triangle, as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, (fig. 26.) (one fide B , being prolonged) the exterior angle A, C, D, is equal to the two interior, and oppofite angles A, and B.

And the three angles of any triangle, as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are equal to two right angles.

For having drawn C, E, parallel to A, B, it is evident that E, C, D, muft be equal to $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and alfo that the angle $\mathrm{A}, \mathrm{C}, \mathrm{E}$, muft be equal to C, A, B. This is not here frietly demonfrated, nor is that neceffary in this introduction, but the reader is referred to the preceding propofitions, in Euclid, for farther fatisfaction. Therefore the exterior angle $\mathrm{A}, \mathrm{C}, \mathrm{D}$, (compofed of them both) muft be equal to A, and B; which is the firt affertion.

Again. Since the angle A, C, D, and the angle A, C, B, taken together, are equal to two right angles (by Prop. XIII.) and fince the angle A, C, D, is equal to the angles A, and B, (as above) it follows that the angles A, B, and A, C, B, which is common, (the three angles of any triangle, are equal to two right; which was the fecond affertion.

PROP. XXXV. THEOREM.

The parallelograms A, C, D, B, and F, C, D, E, (fig. 27.) conftituted on the fame bafe C, D, and between the fame parallels A, B, and C, D, are equal to one another.

For the demonftration of this, and the three following propofitions, the reader is referred to Euclid.
PROP. XXXVI. THEOREM.

Parallelograms on equal bafes, and between the fame parallels, are equal.
PROP. XXXVII. T HE OREM.

Triangles (being the halves of parallelograms) conftituted on the fame bafe, and between the fame parallels, are equal.

PROP. XXXVIII. THEOREM.

Triangles on equal bafes, and between the fame parallels, are equal.
PR O P. XLVI. PROBLEM.

On a given right line A, D, (fig. II.) to defcribe a fquare. Draw the right line A, G, perpendicular to A, D, make A, B, equal to A, D, through B, draw a parallel to A, D, and through D, draw a parallel to A, B.
PROP. XLVII. THEOREM.

In any right-angled triangle, (fig. 28.) the fquare of the hypothenufe, (i.e.) the fide oppofite to the right angle, is equal to both the fquares of the other fides taken together.

For demonftration, the reader is referred to Euclid; but to affift the imagination, a regular figure is here exhibited, which will make the propofition evident, on infpection only.

PROP. XXXI. of the third book of Euclid. THEOREM.
The angle in a femicircle (fig.6.) is a right angle, For demonItration, fee Euglid.

DEFINITION III. BOOK VI.
A right line is faid to be cut in mean, and extreme proportion, when the whole is to the greater fegment, as the greater fegment is to the lefs.

LEMMA. Fig. 29.
To divide a given line A, B, in extreme and mean proportion.
Through the extremity A, draw F, D, perpendicular to it, bifect A, B, in X, take A, D, equal to A, X, and from D, as a center, with the radius D, B, defcribe the arc B, F; then from A, as a center, with the radius A, F, defcribe the $\operatorname{arc} \mathrm{F}, \mathrm{C}$, and C , will be the point fought. Euclid, Prop. XI. of the fecond book.

PROP. II. BOOKVI. THEOREM.
If a right line a, c, be drawn parallel to one of the fides A, C, of a triangle A, B, C, (fig. 9.) it thall cut the fides of the triangle proportionally. See Euclid.

THE

PRACTIGE

OF

PERSPECTIVE, \&oc.

THI S treatife, being chiefly intended for thofe who are verfed in Defigning, begins immediately with the practice of perfpective ; though the utmoft care has been taken to render every thing as clear, to any attentive reader, as the nature of the fubject will admit. With this view, as many of the known terms are preferved, as poffible, that all may be readily underftood by thofe to whom thefe terms are familiar; though others might have been invented that would have been preferred as more fignificant, if the author had intended to exhibit a theoretic fyftem.

His aim is to render the practice intelligible and eafy, to fuch as above mentioned; for whofe fake, the terms and methods in common ufe are employed, fo far as is confiftent with the improvement prom pofed; and in thofe cafes where others become neceffary, they are introduced and explained, and not before; by which means they will be more readily underftood, and more eafily remembered.

The reader is fuppofed to be acquainted with fome of the firft elements of Geometry, otherwife he wants the very language of the frience:

The letter S, is every where ufed for the point commonly called The point of figbt, which is the fame point that Dr. Taylor (more properly) calls The center of the picture, it being that wherein the picture is interfected by a right line from the eye of the fpectator, perpendicular to the picture (or to its plane continued, if need be) which line is the diftance of the picture; and that end of it, fuppofed to be at the eye of the fpectator, is always marked D, whether placed on the horizontal line, or elfewhere, and is called The point of diftance.

The point S, may very properly be confidered as the center of the picture, for if a circle be defcribed round it, with a radius equal to the diftance, the point D, may be placed any where in the circumference of that circle.
Fig. I. S, d, is the borizontal line, or vanifling line of the horizontal plane, it being the interfection (with the picture) of a plane paffing from the eye, parallel to the horizon. S, the point of fight, or center of the picture. D , the point of diftance; as are alfo d , and D, (in the circumference of the fame circle.) G, H , is the ground line, or interfection (with the picture) of an original plane, which is bere the plane of the horizon. A, is an original point, on that plane, fuppofed to be beyond the picture, fo far as it is placed below the ground line, that is, from A, to a; and therefore (once for all) it may be proper to remark, that whatever is fo fituated, fhould be conceived to be turned back, behind the ground line, and D , to be turned forwards, on the point S, in fuch manner, that A, a, and D, S, be parallel to each other, and (in the prefent cafe) both perpendicular to the picture; then fuppofing the picture tranfparent, the point A, will be feen through it at a, by an eye placed at D ; or, to explain it otherwife, the vifual ray from D, to A, (when in the fituation above) will interfect the picture in a. For fuppofe a plane paffing through the lines D, S, and $\mathrm{A}, \mathrm{a}_{2}$) when both are perpendicular to the picture) that plane will cut the picture in the line S, a. Now the point a, muft be fomewhere in the vifual ray, D, A, and it mult alfo be fomewhere in the line S, a; therefore it muft be in their interfection a, the only

of PERSPECTIVE.

point common to both lines. And the fame line S, a, would be the interfection of a plane paffing through D, S, and A, a, though thefe two lines were not perpendicular, but in any other direction (not parallel to the picture) provided they were ftill parallel to each other ; and therefore the fame point a, will be as truly found in whatfoever direction A, a, and D, S, are drawn, if ftill parallel to each other, as here A , is tranfpofed to A, on the ground line, and D , to d , on the borizontal line; then drawing d, A, and $a, \mathrm{~S}$, interfecting it in $a_{\text {, }}$ that will be the fame perfpective reprefentation of A.

It is evident alfo that a, a, is the perfpective of a, A, (an original line) and the whole line a, S, is the perfpective of the fame original, continued infinitely, of which a, a, is a limited part, and all lines terminating in S, reprefent originals perpendicular to the picture; for S, reprefents a point infinitely diftant, to which all fuch lines tend, or (which is the fame thing in perfpective) feem to tend; and is called their vanifio ing point. Hence it appears, that the perfpective reprefentation of every original right line, not parallel to the picture, is included between its interfection with the picture, and its vanifling point : -that is, having continued that original line (whether perpendicular, or oblique) till it cuts the picture, as here in a, and having drawn a parallel to the original line, from the eye, cutting the picture, as here in S, the line drawn from a, the interfection, to S, the vanifhing point, will. be the whole reprefentation of the original line; though that line be infinitely continued beyond the picture. The reprefentation of the more diftant parts of which will approach to S; but the moft diftant point, fhort of infinite, will not reach S; therefore that is very properly named the vanifloing point of fuch line.
A, is here tranfpofed to A, and a, A, becomes by that means parallel to $S, \mathrm{~d}$; it is fo tranfpofed, becaufe in this, and moft cafes, it is eafieft for the operation; but though it is neceffary that thefe two
lines fhould be parallel, yet they may be $f 0$ in any direction; for fuppofe D, $\operatorname{tranfpofed}$ to D, and A, to j , the vifual ray, D, j, will cut a, S, in the fame point a, as is evident.

It is recommended to thofe readers who have not yet begun this ftudy, to re-confider what has been faid, till they fully conceive every part of it, before they proceed; and if they draw the fchemes themfelves, they will apprehend the reafons of the feveral operations much better, and even fave time by fo doing.
In like manner may be found the perfpectives of any number of points, and confequently of lines, and fuperficies: for inftance,
Fig. 2. C, B, is a line in the fame original plane (whofe interfection e, is found by continuing it to the ground line) the extremities of which, being points, are fet off, (in the fame manner as was A) on the ground line, to f and g; from each of which, by drawing a line to d, and then drawing e, S, are found the points c , and b , the perfpectives of C, and B, and thus c, b, is the perfpective of the original line, C, B.
Fig. 3. E, F, is a line lying oblique to the ground line, whofe perfpective is found in the fame manner, viz. by drawing perpendiculars from E , and F, to the ground line, and from each interfection drawing a line to S; then transferring the diftances of E , and F , to the fame line, and thence feverally drawing to d , cutting the two lines (tending to S , in e, and f, and drawing e, f, this line becomes the perfpective of the original line, E, F.

Thus any right line, however fituated, may be reprefented, by finding the perfpective of its two extremities. Hereafter a fhorter, and better method will be fhewn of projecting any oblique lines, but it was neceffary to begin with points.
Fig. 4, 5, 6, 7. It is obvious, that the perfpective reprefentations of the fquare, and parallelograms are found the fame way, and that the reafon why the fquare needs no pricked arch, is, that having all its fides equal, the diagonal from d^{2}, determines the perfpective depth, without any farther trouble.

Fig. 8. And for the fame reafon, the eafieft way of defribing the perfpective of a circle, is by including it in a fquare, and finding the eight points marked $\mathrm{x}, 2,3,4,5,6,7,8$.
Fig. 9. - The perfpective of any irregular plan, as A, B, C, © C. may be found by the feveral points, as is evident. It is to be remarked, that the pricked arches by which the diftances are fet off to the ground line, fhould always be on the fide oppofite to d, (i.e.) when d , is to the right of S , they fhould be transferred to the left, and fo vice verfa.
Fig. 10. When a fquare is placed touching the ground line, in one point, fo as to make, with that line, an angle of 45 degrees on each hand, continue the fides, as A, B, and A, C, to the ground line, and draw from the points b, and E, to d^{2}, and from the points c, and E, to d^{2}, which will give the perfpective ; (d^{1}, and d^{2}, being equally diftant from S.) But in the fecond part, an univerfal rule will be given for all fituations of original figures.

S O L I D S.

Fig. 11, 12. $\mathrm{THE}^{\mathrm{H}}$ plans are firt reduced to perfpective, as here of the cube, and parallelopiped, by the rules above, then perpendiculars raifed on the ground line equal to their true, or geometrical heights, and from the tops, lines drawn to S; then other perpendiculars from the remaining angles of the perfpective plan (meeting the lines drawn to S, from the firft perpendiculars) complete the folids.
Fig. 13. This figure is a Tufcan pedeftal, whofe geometrical plan, and elevation, are firf defcribed, then the plan in perfpective, which may be cither in its place, on the picture, or (as here,) below it, this being chofen that it may not incumber the work above, and alfo that it may be more diftinct, by being lefs crouded in fpace. This is performed as the fquare at Fig. 4, and the inner fquares are determined by the diagonals, croffing the rays drawn to S, from the loweft line taken from
the geometrical plan with its divifions. After this operation, continue the feveral parallel lines of the geometrical elevation, to the line of fection F, G, by pricked lines, and from all thofe interfections draw to S : Then fet off from G , on the ground line, the divifions of the geometrical plan, taken from the bafe of the pedeftal, (viz. I, 2, 3, 4-5, 6, 7, 8,) and from thefe divifions draw lines to d, which lines will cut the line $G, \cdot S$: from which interfections, raife perpendiculars to the refpective members of the pedeftal ; thefe perpendiculars will complete the perfpective elevation marked E .

The perfpective plan might have been made nearer to S, or any where on, or below the ground line, beyond the numbers 1, 2,------8, fo as not to interfere with them, or on the other fide of S, (e.g.) as far as Fig. 14; for the perfpective elevation E, would have ferved for that, by means of parallels.
Then the whole is completed, by raifing perpendiculars from the feveral angles of the perfpective plan, and cutting them by parallels from the correfponding angles of the perfpective elevation ; and lafly, by tracing the figure thro' thefe interfections; as for inftance, a perpendicular from 9 , in the perfpective plan, Fig. 13, and a parallel from 9 , in the perfpective elevation, will meet at 9 , in the finifhed pedeftal, and fo of the reft.
N. B. When the perfpective plan is, at once, reprefented in its proper place, (i.e.) on or above the ground line, as at No. 14. then parallels drawn from the feveral members of that plan, will cut the loweft line G, 9 , of the perfpective elevation E, in the true points, from which the perpendiculars are to be raifed to complete that elevation ; but when it is found more expedient to make the plan below the ground line (as at No. 13.) it is neceffary to fet off the geometrical breadth of the plan from G, on the ground line, with its divifions, which muft be then drawn to d , as before directed, and thereby the perfpective figure completed; for perpendiculars from this laft perfeective plan, tho' below the ground line, will meet the parallels from the perfective elevation in the fame points.

Thefe

Thefe feveral ways are explained, that the principles may be more clearly underftood; but the beft of all methods to conceive them thoroughly, will be to perform thefe operations at the time of reading, and not to pafs on to another figure, till all the former are fully comprehended : it is alfo recommended to fuch as are not practifed in the art, to perform this Fig. 13, in the feveral ways mentioned, before they read farther: they will then proceed with more facility and pleafure.
Fig. 14. This figure is projected in the fame manner as the laft, except that, inftead of the plan and elevation drawn geometrically, the breadths only of the plan, and heights of the elevation, are marked with their feveral divifions; all which are drawn to S, and a diagonal from d^{2}, gives the fquares of the plan ; then from the feveral divifions of this perfpective plan, parallels are drawn to the loweft line of this fubftituted elevation, and from thefe interfections, perpendiculars to the heights of the feveral members : By means of this preparation, the whole is completed in its place; tho', as hath been faid, the plan, and line of elevation, may be feparated, to avoid confufion.
Fig. 15. This example is of a rough pedeftal without mouldings.
After having made the geometrical elevation and plan, draw from every angle of both to S , thro' the line d , A , which is to be confidered as the fection of the picture ; with this diftinction, that d, G, part of it, is the perpendicular edge of the pieture, and confequently will determine the heights of all the points, by means of parallels to the horizontal line, drawn from the interfections of the rays, as $1,2,3, \mathcal{E}^{\circ}$. but from b, to A, (inclufive) the interfections are fuppofed to be on the bottom of the picture touching the ground; and are therefore to be tranfpofed to G, H, the ground line, as at $h, g, G, \mho c$.-a, reprefenting A; for fetting one foot of your compaffes at A, and extending the other to h, on the line of fection, the whole is transferred to the ground line, from a, to h, together with the intermediate divifions, from which laft points, perpendiculars being drawn, will meet the refpective parallels in the true perfpective points, which being joined will form the figure.
N. B. In the ground line, the point h, muft be placed exactly at the fame diftance from f, as h , is from d , on the line of fection ; otherwife the pedeftal will not be feen in the picture, as the fpectator ftanding at S, fees the original. Tibis method of projection is Pozzo's, in bis fecond volume, and is introduced for reafons which will be explained bereafter.
Fig. 16. The next is without geometrical plan, or geometrical elevation.-Having firft drawn the bafe line, a, b, and divided it geometrically at c, and d, (for the body or trunc of the pedeftal) project the whole bafe perfpectively, by means of a diagonal from D, then any where apart on the ground line, as at k, erect a perpendicular, the height of the whole pedeftal, and divide it geometrically at the heights of the feveral members ; and from thefe divifions draw to any point in the horizon, as \int : after which, draw parallels from all the angles of the perfpective plan to k, \int, (the loweft line of the perfpective elevation, and, from thefeinterfections, crect perpendiculars, cutting the feveral lines drawn to \int, and, by thefe laft interfections, form the perfpective elevation, then, by means of parallels, from the feveral members (cutting perpendiculars, raifed from the feveral angles of the perfpective plan) complete the figure.
Fig. 17. Here is added one object more, left any difficulty fhould arife from fuch figures whofe fides are not fimilar, but whoever has underftood thus far, will perceive how this is performed on infpection; the method being the fame as at Fig. 15, except that inftead of drawing all the lines of the geometrical * to the point S, in the horizontal line. In this fcheme, thofe of the plan are drawn to another point below, as T, to avoid confufion, but then it muft be remarked, that as T, f, is equal to S, D, (the diftance) fo R, b, muft be equal to $f_{2} B$, for the reafon given above at Fig. 15, and here the line of divifions taken from i $B, E_{C} c$. tranfpofed to $1 b$, was fet off on the ground line, the contrary way to that of Fig. I 5, (the rays being drawn to T, the contrary way to S,) that the rays in the finifhed figure may run to S^{2}.

[^1]

Fig. 18. Is performed in the fame manner as 14 , but in this, the lines which form the perfpective plan, are left vifible, that the operation may more eafily be underftood. The meafures for the perfpective plan are taken from the geometrical, and fet off, on 0 , p. From thence rays are drawn to S^{3}, and the diagonal from p, to D^{3}, cuts the ray q, S^{3}, in the point Z, which determines the perfpective fquare, that reprefents the fquare B, Z, in the geometrical plan, and, by means of this, the whole plan is put into perfpective. On the perpendicular 0,7 , mark the geometrical heights of the feveral members, and from thefe divifions draw rays to S^{3}, and then draw parallels from all the angles of the bafe, to o, S^{3}, the loweft ray; and from the feveral interfections, raife perpendiculars to the uppermoft, and fo form the perfpective elevation, as at Fig. 14, but which is more apparent at Fig. 16, becaufe the elevation is there feparated from the body of the pedeftal, tho' the metbod is the fame). Now raife perpendiculars from all the angles of the plan, and, by means of parallels from all the members of the elevation, meeting thefe perpendiculars, complete the whole figure, in the fame manner as was done at Fig. 14, and 16.-Particular care muft be taken that each parallel, from the elevation, meet its correfpondent perpendicular from the plan, to determine the fame member, and this is, perhaps, the eafieft, and fhorteft method of all: for the perfpective plan is made with as few lines, and in as little time as the geometrical, which is unneceffary here ; and inftead of the whole geometrical elevation, the geometrical divifions, or heights only (on the firft line 0,7) are neceffary: fo that the meafures may be taken from a book of architecture, without drawing any thing geometrically; and if their meafures (in fuch book) be on a larger, or fmaller fcale, it is eafy to fet them off in any proportion required for the perfpective; as in this very figure, the meafure for the bafe is limited to o, p, wherefore firft draw o, p, in its place; but as the meafures here, are equal to the original at B, and this expedient (for that reafon) unneceffary in the prefent figure, it is more convenient to fhew it apart. -Suppofe then, o, p, drawn in its place Fig. 18. (as directed above) draw from o, any other line, o, t, and on it mark all the geometrical divifions of the plan from the book; then lay a parallel ruler from C t, to
t, to p, drawing t, p, and parallel to it, all the reft of the divifions from o, t, to o, p, and the line o, p, will thus be truly divided; whether o, t, be longer or fhorter than o, p.

And alfo having drawn in its place a perpendicular to $0, \mathrm{p}$, as 0,7 , for the elevation, draw any other line from o, as o, r, on which mark the divifions of the geometrical elevations from the fame piece of architecture in the book, and (in order to preferve the proportion of the bafe) fet off the meafure of o, p, on the perpendicular $o, 7$, reaching to v , and the meafure of o, t, on o, r, reaching to t^{2}, then lay the ruler from v, to t^{2}, drawing that line, parallel to it, transfer all the divifions from $0, r$, to o, v, which will give them in the fame proportion as thofe on o, p.

In this firft part, the feveral methods propofed by writers before Dr. Taylor are exhibited, any of which will anfwer the purpofe, when objects are placed directly in front, and on the horizontal plane; but when objects are in an oblique fituation, even on the horizontal plane, and efpecially when they are on an oblique plane, or when the figures to be reprefented on any plane are themfelves irregular, the new method will appear preferable beyond all comparifon.

SECOND PART.

THESE few examples are fufficient for the firft part, that being intended only to exhibit the common methods, with fome improvements ; which methods, tho' ufeful in many cafes, are no more proper for fome, than the rule of addition, in arithmetic, is proper for finding the product of a fum in multiplication; and notwithftanding a perfon, ignorant of multiplication, might find, by addition, how much 300 times 278 makes; yet, in order to afcertain it, he muft fet down 278 three hundred times, and add all together ; whereas, if he underftood multiplication, he would do it in an inftant, and be much lefs liable to miftake : It is not pretended that the cafes are exactly parallel, but a few examples will fhew that this may not improperly ferve

of PERSPECTIVE.

for illuftration, and that the common methods are attended with fuch tedious operations, fuch a multitude of unneceffary lines, and, in fome fituations, with fuch perplexed and intricate fchemes, as require more than human patience to execute, and, after all, render miftakes almoft unavoidable, of which any one will be convinced who fhall examine the plates of Pozzo, even in his fecond volume, where he has publinhed his fhorter method, which he had promifed in his firt, as well as in other authors ; efpecially when they exhibit objects in oblique pofitions, not only on oblique planes, but even on that of the horizon.

In this fecond part, therefore, it is propofed to thew the advantages of the new method, by comparing it with the old, in feveral inftances: and here it may be proper to obferve, that thofe readers, whofe leifure or curiofity may not permit, or incline them to examine the feveral comparifons propofed, may neglect the examples of the old methods, and go regularly thro' thofe of the new, and fo arrive at the knowledge of the practice the fhorteft way at once: thofe however who are already acquainted with the old methods, will be better fatisfied on feeing the different manners of operation, in the fame examples; and it is prefumed that much the greater number of readers may be of this clafs.
Fig. 19. A, B, C, E, a parallelogram, making a given angle with the ground line G, H, reprefented, in perfpective, by the common method before explained.
Fig. 20. The fame parallelogram by the new method. And here, inftead of placing the diftance on the horizontal line, it is proper to raife it perpendicularly, as S, D; then continue the fides of the plan C , A, and C, E, till they cut the ground line in G, and H; from D, draw D, a, parallel to A, B, and C, H, cutting the horizontal line in a, and draw D, e, parallel to E, B, and C, G, cutting the horizontal line in e ; then draw B, a, and H , a , and alfo B, e, and G, e, which complete the perfpective reprefentation : the lines themfelves forming the figure, without the trouble of finding points, or rifque of miftake, or of inaccuracy in joining them when found.

The PRACTICE

N. B. A, B, and C, E, H, being parallel, D, a, is parallel to both ; as is D, e, to E, B, and $\mathrm{C}, \mathrm{A}, \mathrm{G}$; and it is an univerfal rule, that all original lines parallel to each other, (and not parallel to the picture) run to the fame point in perfpective ; which, when not the point of fight, is called by the old writers an accidental point, or more generally a point of concourfe; but by Taylor, a vanibing point, whether it lies in the horizontal line, or elfewhere: Thus a, is the vanifhing point of A, B, and C, H, and B, and H , being their interfections, their perfpectives are found between B, and a, and between H , and a ; and fo, univerfally, the perfectives of all original lines (not parallel to the picture) lie between their interfections with the picture, and their vanifhing points, as was obferved before.
Fig. 21. A, B, C, E, the plan of a cube placed obliquely to the ground line.---It is required to find the perfpective of the whole cube in that fituation.

According to the old method: After having found the perfpective of the plan, and raifed perpendiculars from all the angles, fet off the geometrical height any where on the ground line, as at f, and draw from the extremities f, and g, to any point in the horizontal line h ; then draw parallels from all the angles of the perfpective plan, to the lower line f, b; and, from the interfections, raife perpendiculars to the upper line ; and then, from thefe perpendiculars, draw back other parallels to the correfponding perpendiculars raifed from the angles of the perfpective plan, which will complete the cube.
Fig. 22. To reprefent the fame according to the new method: After having found the perfpective plan, (as at No.20.) raife perpendiculars from all the angles of the perfpective plan, and make $c, 1$, (which touches the ground line) of the true geometrical height ; then from I , the top of this line, draw to e , and k , (as before for the plan,) and from 2, to K, and from 3, to e, interfecting each other at 4 , and fo finifh the upper fquare, as the lower, which completes the Eigure.

of P ERSPECTIVE.

After what has been faid (at Fig. 15. and 17.) of Pozzo's fecond method, it would not be neceffary here to add any thing more in explanation of it, if it were not, that there will be feveral occafions for the fame kind of operation ; wherefore, to render it as clear as poffible, the following example is propofed.
Fig. 23. A, is an original parallelogram, fuppofed to be placed on the horizontal plane, behind the picture, whofe interfection with that plane is G, h, the fpectator ftanding at d ; wherefore firft draw lines from each angle to d , which will cut G, h, then transfer thofe interfections to the proper ground line of the picture G, H; begin by fetting one foot of the compaffes in o , (which is the interfection of d , o , with G, h, perpendicular to it ,) and fo transfer the feveral divifions from the line G, h, to the line G, H, beginning at O, in this laft line; and from $\mathrm{I}, 2,3,4$, on G, H, raife perpendiculars.

After this operation, raife perpendiculars alfo from all the points of the original figure A, to the line G, H, (continued behind G,) and from their interfections with this line, draw lines to S, which will cut G, D, the fection (or upright edge) of the picture, and from thefe interfections (viz. of the lines to S, with G, D,) draw parallels, which meeting with the perpendiculars raifed from $1,2,3,4$, determine all the points of the perfpective ; but here care muft be taken that each parallel determines its correfponding perpendicular; as for inftance, the perpendicular 3, correfponds with the loweft parallel, marked alfo 3, and their interfection reprefents the neareft point of the object marked 3, and fo of the relt, which are all marked with their correfponding numerical figures: this, and the examples before referred to, are performed by the fhorter method of Pozzo, exhibited in his fecond volume, which he propofed as the moft expeditious manner of all; and for that reafon it has been thought proper here, and in fome following examples, to make the comparion between this method and the new.

This example is the fame kind of object, and fituation, as is above fhewn at Fig. 19, in the common method, and Fig. 20, in

The PRACTICE

the new, to which the reader is referred, who may compare them together.

Here is alfo added the fame object, according to the method of A. Boffe, (a famous French engraver and author, who wrote about one hundred years ago) not only becaufe he afferts his to be the eafieft, fhorteft, and moft exact of any to that time, or that ever could be invented *, but alfo becaufe it is fill fo efteemed by fome moderns; he propofes two methods little different from each other, both of them are fhewn in this example.
Fig. 24. And firft at Fig. 24, where the original object is enclofed in fquares of feet (or any known meafure) geometrically, the diftance is fet off in the fame meafure, as from p, to D, eight feet, and the height of the eye, as from D, to O, five feet.

In order to put this in perfpective, as below at Fig. 25, draw the ground line G, H, and divide it into feet ; draw S, S, for the horizontal line, parallel to G, H, and the height of D, O, from it; and having placed S, on that line perpendicularly over P, (which correfponds with P, above,) draw rays from all the divifions to S; then, in order to reduce the fquares into perfpective, (inftead of fetting off the diftance from S,) make a perfpective fcale, or ecbelle fuyante, (as he calls it,) by marking from any point of the horizontal line eight parts of any opening of the compaffes for the eight feet: as here from a, to b, and take one of thefe parts from G, to d, draw d, a, and G, b, which will cut d, a, in c, draw the parallel through c, and from the point where that cuts G, a, as at e, draw again to b, and fo on, till you have as many parallels as are wanted. G, a, d, is what he calls the fcale, the peculiar advantage of which is, that you may always divide the fquares perfectively within the picture, whatfoever diftance be taken, becaufe any opening of the compaffes may anfwer to your foot, the truth of

[^2]
the operation depends only on making G, d, equal to one fuch opening, or divifion. Now find the feveral points, of the object in thefe perfpective fquares, correfponding to the original in the geometrical plan, join thefe points, which complete the work.

His other manner differs in nothing from this, except that inftead of drawing the rays and the parallels quite through them. You need only make the perfpective fcale, and divide the perpendicular S, P, by that fcale, and fo meafure the depths of the feveral points by the line S, P, and the breadths from the fame line on both fides, correfponding to the original : but then, in order to fet off the parallel feet, it is neceffary to add the line e, a, placing e, one real geometrical foot diftant from G, which will determine the perfpective parallel feet, all the way up.

The performance of all thefe particulars will convince any one of the tedioufnefs, as well as uncertainty, of this manner of working; it will be found almoft impoffible to afcertain the exact place of the feveral points, even with the utmoft care; not to mention the neceffity of making all that preparatory geometrical work, if not in fquares, yet in divifions *.
Fig. 26. Next follows the fame object, according to the new method, in order to be compared with thofe above, which having been before explained at Fig. 20, from which this differs only, in that the neareft angle touches not the ground line. It is to be obferved, that the lines here form the object, without the poffibility of miftaking, and with the utmont exactnefs, and in the tenth part of the time. The perpendicular S, D, is the diftance o, and d, the two vanifhing points, found by drawing D, o, on one fide, and D, d, on the other fide parallel to A, B, and E, B, refpectively.
Fig. 27. This pedeftal is reprefented in perfpective by Pozzo's fhorter method, as explained at Figures 15, and 17, to which nothing need be added, except that the geometrical elevation muft be formed by

[^3]perpendiculars from all the angles of the plan; as placed obliquely, which, in a complicated defign, makes fometimes a very odd, and intricate figure, fcarcely intelligible, as appears in feveral inftances in Pozzo's fecond volume; whereas, according to the new method, this never happens; but, on the contrary, how complicated foever the original may be, the plans and elevations always make the fame kind of figures as the original geometrical objects. This will be fhewn hereafter.

The operation is the fame as at Figure 23. And here, befides the great number of lines, much time, patience, and care, are neceffary to find the correfponding points, (after having drawn all the perpendiculars, and parallels of the plan, and elevation,) which renders the work very liable to errors.
Fig. 28. Here is alfo added the fame pedeftal, in the fame pofition, according to A. Boffe's method, by means of fquares, (which is fhorter than his other mentioned before, becaufe the meafuring is avoided, which requires more time than making the fquares;) but, befides fo many needlefs lines, there is great danger of miftaking the points by the perfpective meafures, and much time is neceffary to complete the figure with any exactnefs.
N. B. The fmall plan above is, (in this method,) a neceffary preparation, and the feveral points of the perfpective plan are determined by marking them in the fame parts of the perfpective fquares below, as in this, refpectively. The perpendicular e, f, on the fide of the fmall plan above, is divided geometrically for the height of the members, which are to be transferred alfo to the perfpective; for inftance, the top of the capital is four feet; therefore, on the ground line take four feet, and with that meafure turn the compaffes from the neareft angle 1, which touches the fame ground line, to h. -_Again, for the fame height at i, take four feet on the parallel at i , and turn the compaifes up to k ; and fo for every other point ; after which they muft all be joined.

Fig. 29. But in the reprefentation of the fame pedeftal, by the new me-: thod, the whole work is performed by means of three points only, a, b, and c, to which all the lines are drawn, and thefe lines form the figure itfelf; fo that having fixed one end of the ruler at a, the lines of two fides, (i.e.) all that are parallel in the original, are drawn without taking it off, and by placing it at c, the lines of the other two fides are all drawn, without moving the end from thence, and, with the utmof exactnefs; b is the vanifhing point of one of the diagonals, found by drawing D, b, parallel to d, b, in the geometrical plan.
If what has been hitherto faid of this method be underfood, (efpecially at Fig. 22.) this will not need farther explanation; however, to leave no difficulty; After having raifed perpendiculars from all the inward and outward angles of the perfpective plan, the geometrical meafures of the heights are marked on the perpendicular of the nearef outward angle, (which is pricked, or dotted;) and, from thefe divifions, lines drawn to b, cutting the perpendiculars of the neareft and fartheft angles of the die, or body of the pedeftal, determine the feveral points of the die; and drawing from thefe interfections to a, and c, the reft of the die is completed, and fo of the mouldings.
Fig. 30. The next figure reprefents two bafes leaning one againft the other, taken from the 28th of Pozzo's fecond volume, both of them raifed from the horizontal plane; for which reafon he fays, " be could " not afign a point of fight, and therefore was obliged to transfer all the " points one by one with bis compafjes, that be might find the terwination " and curvature of each line *." And although (in the plate referred to) he has not left the lines by which thofe points were determined, yet whoever underftands his method will perceive the neceffity of them, and that in fuch oblique fituations, they muft be almoft innumerable, as will appear throughout his book, on infpection of the odd plans

[^4]he was obliged to make, which of themfelves are extremely difficult to form, and intricate when formed.

The pains of fo tedious an operation, as this method requires, might have been fpared; but that Pozzo's books (efpecially the fecond volume) are not in every one's poffeffion; and that, of thofe who have them, very few (if any) may have given themfelves the trouble to project thefe, or fubjects of the fame kind, by his rules; and, therefore, may not be fenfible of the neceffity of ufing fo many lines. It was, therefore, thought expedient to project thefe bafes in his way firft.

The manner of working is the fame as at Figures $15,17,23$, and 27 , above explained. And firft the profiles A, and B, are geometrically drawn, then the plans C, and D, by dropping perpendiculars from every point of the profiles, and from the feveral points of the axes A, E, and B, F, (which cut the members of the bafes) in order to find the feveral centers on the line C, D, which line receives all the tranfverfe diameters, as f, d, and its parallels of the bafe A , and likewife thofe of the bafe B ; but the perpendicular diameters are transferred from the profiles geometrically, thus; C, reprefents the center A; d, reprefents the point d; and f , the point f; all three found by the perpendiculars; then from C , upwards and downwards, the geometrical length A, d, or A, f, is fet off from C , both ways, to h , and g , for the perpendicular diameter g , h , which completes this circle; the fame operation forms each circle, \mathfrak{E}. After the profiles and plans are completed, lines muft be drawn from every point of both to 0 , cutting the line 1,5 , part of which, viz. from 1 , to 3 , reprefents the interfection of the bottom of the picture with the ground, and muft be transferred, with all its divifions, to the proper ground line of the picture, and perpendiculars raifed from all thefe divifions. Another part of $\mathrm{I}, 5$, viz. from 4 , to 5 , reprefents the perpendicular, or upright fection of the picture ; and, therefore, from all its divifions, parallels muft be drawn, meeting the perpendiculars raifed from the divifions of the ground line, and thefe interfecting, will determine the points of the perfpective; but the number and confufion of lines is fo great, that it will be neceffary to fix every point with the compaffes, or (as Pozzo himfelf advifes) with

a pair in each hand, as thus; place one foot of your compaffes in I , on the line of fection, and extend the other to 6 , which is the interfection of the vifual ray from D, to O, and tranfpofe this meafure to the picture, fetting one foot there in I , and the other foot will reft on the perpendicular marked 6 , in which the center D, is to be found : at the fame time, fet one foot of the other pair of compaffes in 2 , on the line of fection, and extend the other to the point where the ray B, O, cuts that line, as at 7 , and transfer that height to the perpendicular 6 , on the ground line, (found by the other compaffes,) which will mark 7 , on that perpendicular, the perfpective of the center fought ; and this double operation muft be repeated for every point, till all the points in the perfpective are found, which muft afterwards be joined : in doing all this, great care muft be ufed not to miftake; and when completed, can never be fo true as by the other method; becaufe here the feveral lines, which fhould be drawn to the fame vanifhing point, muft be drawn from point to point only. Here are ufed five points only for each circle, viz. the center, and extremities of two diameters, to avoid adding more lines.

As to the parallels and perpendiculars, which inclofe the perfeective, they might have been omitted, if the two pair of compaffes be made ufe of ; and efpecially if the perfon ufing them has got into the habit : but thefe lines are left, that every thing may be clearly underfood; but as the parallels are in themfelves neceffary to mark the line of fection, they are only continued on to the bafes, and do not increafe the number of lines.

All the other lines are abfolutely neceffary in Pozzo's fecond, or fhorter method. The great number of lines, and the confufion arifing from thence, has caufed even him to miftake, the lower bafe being falfe in his plate; for the lines reprefenting the thicknefs of the plinth, which are perpendicular to the ground line, and parallel to each other, ought to run towards a certain point, and fo be neither perpendicular, nor parallei : if the fault be not his, it may be the engraver's; but whofefoever it be, the print is apparently wrong.

Fig. 31. In order to reprefent this according to the new method, it was neceffary to find the centers and diftance, both of the vanifhing line, and picture, by continuing the two fides of the lower plinth till they met in a point, (as here in C,) and then drawing C, D, parallel to the ground line: Thus, C, D, becomes the vanifhing line of the oblique plane, which the lower bafe forms by being raifed, and C, its center.
N. B. This line is always to be ufed for objects obliquely fituated, as the borizontal line is ufed for objects on that plane.
The point of diftance D, of this vanifhing line, was alfo found, by drawing a line through the diagonal of the fquare of this plinth, from the angle 3 , to the vanifhing line C, D. Thus far, from Pozzo's book, for otberwife, thefe are circumftances always given.

Thefe points being found, half the meafure of Pozzo's was taken, and fo the fame proportions were preferved.

The reft is all performed as before explained; but the fituation of the objects being new, a more particular detail may be ufeful, and will thew the univerfality of the principles.

As the center of the picture, found, by a line, perpendicular to it, from the fpectator's eye, is that point to which all original lines, perpendicular to the picture, tend; fo every vaniming point being found by fome line from the eye of the fpectator to the picture, is alfo the vanifhing point of all other lines parallel to that ; and every line from the fecctator's eye cutting the picture, (or plane of the picture how far foever extended,) makes fuch a vanifhing point; thus C is the vanifing point of the line 1,2 , and of all original lines parallel to it.
S, D, is the horizontal line, found by making the angle $D, \mathrm{C}, \mathrm{D}$, equal to that which the plinth makes with the ground, and defcribing an arc from D, to D , with an opening of the compaffes, or radius, equal to C, D, (the diftance before found,) and drawing D, S, parallel to D, C; then drawing through C, a line perpendicular to D, C, cutting D, S, in S, that point S, becomes the center of the picture, $\operatorname{and} \mathrm{D}, \mathrm{S}$, the diftance of $\mathrm{it} . \mathrm{D}, \mathrm{C}$, is the diftance of the vanifhing

$$
{ }^{\circ}
$$

of PERSPECTIVE.

point C, and of the vanifhing line D, C; and D, is to be confidered as the eye of the fpectator; therefore (if D, C, finds the vanifhing point $\mathrm{C}_{\text {, }}$) a line from D, perpendicular to D, C, muft find the vanifhing point of lines perpendicular to 1,2 , as D, d, finds d, cutting $\mathrm{C}, \mathrm{S}, b$, beyond the limits of the paper, which will be the vanifhing point of the line $\mathrm{I}, 3$, and all others parallel to it, as are thofe at all the angles of this plinth, which muft therefore be drawn to d, as the line D, d, cuts the line C, S, beyond the limits of the picture; but it is not neceffary to ftop here to explain the manner of drawing lines to an inacceffible point, (which is done in the fourth part:) then, for the thicknefs of this plinth, draw a line through I , parallel to C, S, (which is the vanifhing line of the planes $1,2,3$, and $4,5,7$) for that point I , is fuppofed to touch the picture, (where all objects are of their true, or geometrical fize,) and on that line, from I, downwards, mark the geometrical thicknefs of the plinth, and having tranfpofed the diftance of the vanifhing point d, from D , to $\mathrm{d} d$, draw a line from $\mathrm{d} d$, to the point marked, which will cut $1, d$, in the point 3 ; this determines the thicknefs of the plinth, by which it may be completed. The reft of the members are determined exactly in the fame manner, as if the bafe was on the horizontal plane, ufing C, D, the vanifhing line, as an horizontal line. -The heights, and breadths of the circles are determined in fquares, as hath been taught in the firft part, and the circles drawn through the eight points there feecified.

For the other bafe, draw firft the pricked line 3, S, which marks the ground or horizontal plane, perpendicularly under $3, \mathrm{k}, \mathrm{C}$; then fet off from 3 , to f, the geometrical diftance, that the angle of the other plinth is from the point 3 , and from D , draw a line to f, cutting $\mathrm{S}, 3$, in 4 , and that interfection will be the point fought, in which this plinth touches the ground; and having drawn D, b, making the angle S, D, b, equal to that which this plinth makes with the ground, (i. e.) 38 degrees, b, is the vanifhing point of the line 4,5 , and its parallels ; therefore draw $b, 4,5$; then to find the length of that line, make ufe of the parallel to the vanifhing line C, S, before drawn, viz. $1,3, \mathrm{e}$,
by drawing firft a line from $\mathrm{d} b$, (the diftance of D, b,) through 4 , to that line, cutting it in e ; and from e , upwards, mark the geometrical length to g, and from g, draw back again to $\mathrm{d} b$, which gives the perfpective length of 4,5 ; from which points 4 , and 5 , parallels to the ground line are drawn ; and the length of the parallel at 4 , is found by drawing a line from S, to the point 6 , cutting that parallel, and drawing a line from b, through this laft interfection, it will cut the parallel 5,8 , in 8 , and fo complete the bottom, or lower fquare of the plinth.

Or this fquare may be determined (without making ufe of the line $1,3, e$, by firft finding the length of the parallel at 4 , as laft directed, and then drawing a line through the interfection which marks that length, from D^{2}, (the diftance of the vanifhing point b,) to the line $b, 4$, cutting it in 5 . This line $\mathrm{D}^{2}, 5$, gives the diagonal of the fquare, by which it may be completed.
$N . B$. The diftance b, D^{2}, is brought down to D^{2}, by fixing one foot of the compaffes in b, and the other in D , and defcribing an arc, till b, D^{2}, is parallel to the ground line; and fo it becomes the vanifhing line of the plane, or fquare of this bafe.
D, a, being drawn perpendicular to D, b, finds a, the vanifhing point of 4,7 , and its parallels; wherefore draw from 4, 5, and 8 , to a, and having found the perfpective height of any one of them, by the fame operation as for the other plinth, this is completed. And to find that height, draw a parallel to S, C, a, from 4, upwards, and on that mark the proportional height or thicknefs, which is found by drawing from S, through 4 , to 4 , the ground line, making another parallel, as 3,1 , there, of the geometrical height, and from 1 , the top of that, a line drawn back to the fame point, S, will cut the parallel drawn from 4, in the true proportion. Now, from da, (the diftance of a,) draw a line to this laft interfection, cutting 4,7 , in 7 , and from b, through 7 , a line cutting $5, a$, and from that interfection, a parallel to 5,8 , by which the plinth is completed. The other members are determined, as thofe of the firt bafe.

Or (omitting the parallel to S, C, a, drawn from 4,) continue the line $3, \mathbf{y}$, upwards, and then produce the line $b, 4$, till it cuts that line (3,1 , continued) as at 9 , and there mark the true geometrical height 9,10 , and draw $b, 10$, which will cut the line $4, a$, in 7 , and fo finifh the bafe. By this, the trouble of finding the proportional height at 4 , is faved.

That the whole operation may be more eafily comprehended, it is again reprefented apart from the picture, in pricked lines, drawn from the fame points, and marked by the fame numerical figures.
This explanation is lengthened by the neceffity of fhewing how the fcheme was prepared from-Pozzo, the intention being to reprefent thefe bafes exactly in the fame fituation, as he had placed them ; for otherwife, (i.e. without any reference to him,) the defcription would have been more fimple; it is alfo very minutely particular, that nothing material might be left unexplained, it having been faid at the beginning, that thefe things fhould be referred to the occafions that might require them, in order to avoid unneceffary definitions, E \mathcal{c}. Though this method is lefs regular, yet it is much more eafy, becaufe the explanation attends the ufe.

Thofe who may not readily comprehend every particular, at the firft reading, are advifed to draw, in perfective, the two plinths only, in thefe, or the like fituations, and to place them at fuch angles with the ground, that all the vanifhing points may fall within the limits of the picture.-By this difpofition, they will better fee the reafon of every operation; and the next figure is added to affift them in it.
Fig. 32. Here the vanifhing points are all within the paper, and nothing completed but the two plinths, the lower of which is raifed higher from the ground than in the preceding example, not only to bring the vanifhing point d, within compafs, but alfo to fhew, evidently, that the lines 1,3 , and 6,9 , cannot poffibly be perpendiculars to the ground line, nor parallel to each other (as they are in Pozzo) whers the bafe does not lie flat on the horizontal plane.

In this fcheme 3, 6, touches the ground line; and is therefore the true geometrical length. C, D, is the vanifhing line of the oblique plane, to which the bafe is raifed, or on which it may be fuppofed to lie. The lower fquare is therefore projected by means of C , the center of that vanifhing line, and D, its diftance; as readily as, if it was on the horizontal plane, it would be, by means of S, and D, the center and diftance of that plane.

Now draw from d, (found as in the foregoing example) through 3, and 6 ; then raife a perpendicular from either of them, as here from 6 , on which mark the geometrical height, or thicknefs of the plinth, at e , and having fet off the diftance d, D, to $\mathrm{d} d$, from thence draw through e, which will cut $d, 6$, in 9 , and 6,9 , will be the perfpective height ; from 9 , draw a parallel which will determine the point I , and fo complete the plinth, by drawing I, C, and $9, \mathrm{C}$, and from d, draw through the other two angles of the lower fquare, meeting I, C, and $9, C$. It is needlefs, here, to repeat what was before faid of the other plinth in the laft fcheme.

The circles which are here barely traced, are done in the manner explained at the beginning, juft as if they were on the horizontal plane.

It is apparent how much work is faved by this method; neither geometrical plan, nor profile are neceffary, if the meafures are but known; and if not, the plan and profile, in their common geometrical fituation, will anfwer the purpofe of the moft oblique pofitions; fo that a printed book of the feveral orders may be referred to, without the trouble of drawing the particular parts that may be occafionally wanted.
Fig. 33. A figure in A. Boffe's perfpective, for the reprefentation of which, he makes ufe of feveral fchemes. Firft, that at No. r, where $\mathrm{m}, \mathrm{e},-\mathrm{n}, \mathrm{a}$, is, by him, defigned for the profile of the feat of the object : z, e, is the inclination of the picture: o , the feectator's eye : a, his ftation, or feet: o, z, the diftance: 0 , a, height of the eye. If (fays he) the object be only a plan, as $\mathrm{b} ; \mathrm{c}$, d , on the geometrical £quares at No. 2, find thofe feveral points in the correfponding perfpec-

tive fquares below at No. 3. (as has been taught before at Figure 25.) But if the object be above the plane of the feat, as the Fig. f, r, s, (in the faid geometrical fquares, No. 2.) then by means of the elevations $\mathrm{b}, \mathrm{f},-\mathrm{c}, \mathrm{r},-\mathrm{d}, \mathrm{s}$, perpendicular to the feat $\mathrm{b}, \mathrm{c}, \mathrm{d}$, draw thofe elevations parallel to q, u, and from the ends of them $\mathrm{b}, \mathrm{c}, \mathrm{d}$, drop perpendiculars $b, 1,-c, 2,-d, 6$; and from their other ends f, r, s, draw $f, 1,-r, 2,-s, 6$, making (with them) angles $b, f, i,-c, r, 2,-d, s, 6$, equal to $n, 0, a$, above at No. 1 , and draw 1, 2,-1, 6,-2, 6, you will have another feat $1,2,6$, and other elevations $f, 1,-r, 2,-s, 6$. Then find below, at No. 3, the perfpective $1,2,6$, of this other feat, as B, D, C, was found, and make the perpendiculars $1, F, 2, R, 6, S$, in proportion to their refpective plans; that is, on the perfeective chequer take the fame meafures along the feveral parallels of $\mathrm{I}, 6$, and 2 , as they have above in the geometrical chequer; then join $\mathrm{F}, \mathrm{R}, \mathrm{F}, \mathrm{S}$, R, S, by this means you will complete the perfpective of f, r, s; and, laftly, join F, B, S, D, and R, C, which finifh the whole prifm.
Fig. 34. Now, in order to reprefent the fame object in the fame fituation, nothing more is neceffary than to defrribe, either geometrically, or in words, the form and fituation of the object, or to give one fide of it, whofe form and fituation are known, or defcribed, and require the reft; as here, let E, F, be given, it is required to reprefent a triangular prifm, whofe bafe is fimilar to the triangle $D, f, \mathrm{~g}$, (above this Fig. 34,) and whofe height is in proportion to the fide D, f, of that triangle, and on a picture inclined to the plane of the feat in the angle o, a, n, Fig. 33, No. i. The picture is as Boffe's.
Continue E, F, Fig. 34, till it cuts the vanifhing line [C, D, Z, X,] as in i, which will be its vanihhing point ; then from C , raife C, D, equal to C, D, or $[\mathrm{Z}, \mathrm{X}$,$] the diftance given; draw \mathrm{i}, D$, and at D, make the given triangle $f, D, \mathrm{~g}$, continue $D, \mathrm{~g}$, to the vanifhing line, which finds k, the vanifhing point of E, G; therefore, draw k, E; then in order to find the length E, G, which is geometrically equal to E, F, bring down the diftance i, D, to the vanifhing line at d , draw E, b, parallel to the vanifhing line, and draw d, F, which
will cut E, b, in b ; then is E, b, the geometrical length fought, which fet off from E , to a ; bring down (in like manner) k, D, to e, and draw e, a, which cuts E, k, in G; then draw G, F, which finifhes the bafe.

And in order to complete the prifm in this fituation, having defribed the arc D, d, with the radius C, D, draw C, d, fo as to make the angle $\mathrm{D}, \mathrm{C}, d$, equal to the inclination of the original plane, with a plane perpendicular to the picture ; that is, to the angle $z, 0, \mathrm{~S}$, (Fig. 33, No. $1 ;$) and cutting the arc D, d, in d, draw $d, \mathrm{~S}$, parallel to D, C; then S , will be the center of the picture, and the angle $\mathrm{C}, d, \mathrm{~S}$, equal to $\mathrm{D}, \mathrm{C}, d$; draw $d, \mathrm{~N}$, perpendicular to C, d, cutting C, S, (continued) in N , below, which will be the vanifhing point of lines perpendicular to the original plane; fo that drawing from N, through the points G, E, and F, the lines G, H, E, I, and F, K, are got. And to determine their lengths, the diftance N, d, is fet off on C, S, at N^{2}; and E, l, being made parallel to S, C, and equal to E, b, (the geometrical height) draw N^{2}, l, which cuts E, I, in I , the length fought; whence drawing to i , and k , the points H , and K , are determined, which, on joining H, K, completes the whole figure.
N. B. Left the reader fhould not readily conceive the reafon of this operation, there are reprefented on the profile of Boffe's figure, No. I, the lines made ufe of in this; for inftance, S , is there the center of the picture (as formerly explained;) and o, S, properly the diftance of the picture, e, y, (being parallel to o, S,) reprefents the profile of the plane, perpendicular to the picture; and e, h, being the original plane, on which the object is placed, b, e, y, is the angle of inclination of thefe two planes, equal to $z, 0, S$, in the fame fcheme, which is fuppofed to be given for working the problem ; and is the fame angle as $\mathrm{D}, \mathrm{C}, d$, and $\mathrm{S}, d, \mathrm{C}$, in the picture, Fig. 34.

Though the work is fimple and fhort, the text may appear fomewhat long; but that is only becaufe the reafons of the operation are taught, and becaufe every particular is explained in the moft familiar manner for the fake of learners.

It might have been remarked before, that this method of Bofe is exceedingly operofe, and very uncertain; for in order to tranfpofe the feveral points from the fmall geometrical chequer to the larger perfpective fquares, the rays $\mathrm{Z}, \mathrm{B}, \mathrm{I}, 8$, (Fig. 33.) $\mathrm{Z}, \mathrm{D}, 6$, and $\mathrm{Z}, \mathrm{C}, 2$, fhould be drawn, and thefe croffed by lines from the point of diftance X, to find each point, as $Z, 8$, and $X, 7$, are neceffary to find the point 1 , only, (the diftance 8, 7, being the geometrical depth or diftance of the point I, from the ground line;) unlefs there were fo many fquares in the geometrical plan as to crofs every point, which would not only be exceffively tedious to perform, both there, and in the perfpective, (where all muft be repeated;) but the multitude of lines would neceffarily produce confufion; and if the operation be performed without thefe lines, then the feveral places of the points in the perfpective plan can only be gueffed, by infpection of thofe in the geometrical plan; and whatever is done by guefs muft be uncertain. Whereas, in the new method, there is not a line, or point, neceffary, more than are here exhibited, and no poffibility of miftake, or occafion of uncertainty, becaufe the lines form the figure of themfelves.
Fig. 35. In this figure, which is alfo Boffe's own, he propofes to reprefent the prifm $\mathrm{F}, \mathrm{S}, \mathrm{R}, \mathrm{P}, \mathrm{O}, \mathrm{G}$, on a picture, whofe profile z, e, above, inclines forward, (as the laft did backwards:) the profile of the original plane is $\mathrm{n}, \mathrm{a}, \mathrm{m}, \mathrm{e}$; the whole operation is the fame as his laft, except that the pricked lines in his geometrical plan, on the chequer, which in the former were drawn downwards, are here drawn upwards, on account of the different kind of inclination : the correfpondence of the perfpective plan with the geometrical, is evident, therefore needs no farther explication.

Only it may be remarked, to what a confufed fcheme he was reduced, by his limited principles.

Fig. 36. And how fimple and eafy the other figure appears, which reprefents the fame object, and is performed by exactly the fame operation as Fig. 34, with this only difference, that $D, \mathrm{~N}^{2}$, runs upwards; whereas $d, \mathrm{~N}$, in the other, runs downwards, on account of the different inclination of the object at 34 , and 36 , (N , in 34 , and N^{2}, in 36 , are the vanifhing points of lines perpendicular to the original planes of their refpective objects;) and that this may, if poffible, be more eafily conceived, the points S, N, and S, N^{2}, are marked with the fame letters in the geometrical fchemes, Fig. 33, No. I, and Fig. 35, No. i. It is true Boffe confines himfelf to the compafs of his picture, and undertakes to reprefent all objects by means of lines terminating within it. This is very well, if it be always the fhorteft, and fureft way; but if there are cafes which require more room ; that is, if fome objects can be reprefented with greater certainty, by taking more fpace, or on a fmaller fcale, and can then be transferred by the picture; and all this done in lefs than a quarter of the time, that would be neceffary to produce them by his method ; where is the advantage of confining the operation always to the picture ? Befides, the fcheme formed to be transferred, remains, and may be very ufeful another time. Though this object, however, might have been reprefented by an operation within the picture (with the addition of a few more lines,) on the new principles, as Jaall be Joewn bereafter. To all which may be added, that this very figure of Boff's is falfe, though very neatly engraved by his own hand, which muft be owing to what was hinted before, viz. that his method requires fo much gueffing, as to make it almoft impoffible not to fall into fome error from thence. And if, to avoid thefe errors, a greater number of lines ftill are drawn, in order to afcertain every point, the confufion would be fo much increafed, that it would itfelf become a new caufe of miftake.

His error is in placing O, higher than P, G, in Fig. 35, as by the pricked lines; and fo reprefenting P, O, G, as above the eye, (and feen on the under part) which cannot poffibly be, while it is below Z, X, the vanifhing line. This will appear on infpecting his own geometrical profile, Fig. 35, No. I, where, o, z, reprefents Z, X,

(Fig. 35, No. 3.) and fhews that if P, O, G, was even with that line, it would be reduced to a fingle line, and muft be reprefented by it; that if it were ever fo little under that line, as at 3, 4, (Fig. 35, No. r.) then 4 would be feen (by the cye at o) higher on the picture z, e, than 3 , which is nearer; and laftly, that if it was above the line Z, X, Fig. 35, No. 3. (and not otherwife) the object would be feen as 1, 2, Fig. 35, No. 1. (i. e.) 2, would be feen lower than 1, which is nearer : thus he has fallfy reprefented $\mathrm{P}, \mathrm{O}, \mathrm{G}$, being below the line Z, X, having given it the fame appearance as that in which it is truly exhibited, P, o, g, Fig. 36, where it is above the line C, D, which is the fame with the line Z, X, Fig. 35. P, O, G, Fig. 36. is alfo a true reprefentation of the figure as it fhould have been given by Boffe.
Fig. 37. Here is added another figure of Boofe, being a cube refting on one of the folid angles, for which (by way of preparation) the geometrical fcheme above is by him given, but not fufficiently explained. Some lines therefore are added to render it more intelligible ; ift, the fquare $\mathrm{g}, \mathrm{n}, \mathrm{o}, \mathrm{p}$, is made, then the diagonal n, p, drawn, which is transferred by the pricked arch p, b, to the point b , in the line n, g, and the line b, a, drawn parallel and equal to g, p, and then n, a, is drawn, and $b, 7$, perpendicular to, n, a, cutting it in 7 , and from b, as a center, with the interval, or radius, $b, 7$, a circle is defcribed, in which two regular equilateral triangles $1,3,5$, and $2,4,6$, are infcribed ; thus $\mathrm{b}, \mathrm{n}, \mathrm{o}, \mathrm{a}$, reprefents, geometrically, the cube ftanding on the point n , b, n, and a, o, being profiles of two oppofite faces feen anglewife; (tbat is, reprefenting diagonals of the cube,) b, a, and n, o, of two other faces feen laterally ; $\mathrm{b}, 7$, and $\mathrm{o}, 8$, two femidiameters (together) equal to $l, \mathrm{~m}$, or $(\mathrm{I}, 4 ;) \mathrm{n}, \mathrm{a}$, is the axis, to which are added the double line $l, \mathrm{n}, \mathrm{m}$, and the two perpendiculars b, l, and $\mathrm{o}, \mathrm{m} ; l, \mathrm{n}, \mathrm{m}$, reprefents the profile or fection of the ground or plane on which the cube is fuppofed to reft, as on the point n; and n, b, (being equal to n, p, the diagonal of a face) is the profile of the face $\mathrm{B}, \mathrm{P}, \mathrm{C}, \mathrm{F}$, (reprefented below ;) B , reprefenting n , and $l, \mathrm{~b}$, (equal to $7, \mathrm{n}$, is the perpendicular height of the point b, in the geometrical fcheme reprefented by $C, I, 3, G$, and $5, H$, in the perfpective; as o, m, equal to 7 , a,

The PRACTICE

or $8, \mathrm{n}$, the perpendicular height of the mof diftant point, and two others reprefented by $4, I,-2, P$, and $6, F$, in the perfpective; for n, a, is the greateft height, being the axis of the cube, reprefented in the perfpective, by A, B; and thefe three are all the perfpective heights.

The manner of performing the perfective, according to Bofe, has been before explained; and it is to be carefully remarked, that, in order to find thefe perfeective perpendiculars, the meafure muft be firft taken with the compaffes, above, on the geometrical; the compaffes thus open muft be applied to that chequer, to fee how many fquares, and parts it contains, and then the fame proportion muft be taken along the parallel fquares of the perfpective, even with that point in the perfpective plan, from which the perpendicular is required. For inftance, to find the point c , in the perfpective, take the meafure $l, \mathrm{~b}$, with the compaffes, apply them to the geometrical fquares, where it appears, that this line $l, \mathrm{~b}$, is equal to r, s, in the geometrical chequer (i.e.) two fquares, and a part of another; then from the point 1 , in the perfpective meafure, 'take two fquares and fuch part from I , to $i 0$, and make $1, \mathrm{c}$, equal to it, by applying the compaffes, thus open, from I, perpendicularly to C, and fo for every height.
Fig. 38. No. 1. Is the fame cube by the method fo often explained; and here it is only neceffary to require that a cube be reprefented perpendicularly on its axis, and after the center, and diftance of the picture are given, to give, alfo, the point B , the pole of the axis, on which it ftands : C, D, is the diftance, wherefore make the angle $\mathrm{C}, \mathrm{D}, \mathrm{W}$, equal to $\mathrm{b}, \mathrm{n}, l$, (Fig. 37 , No. r.) the inclination of the neareft face of the cube (b, n,) with the ground, n, l, and draw D, O, perpendicular to D, W; then draw B, O, and from B , draw B, i, parallel to D, O, and (in order to find the proportional length of B, i,) draw B, z, parallel to C, D; then make r, t, on the ground line, equal (geometrically) to a fide of the cube, and draw t, Z, cutting z, B, in y ; then y, z, is the proportional length, at B, which fet off from B, to, i; now draw D, i, cutting B, O, in I, then B, I, is one line determined. Fix one foot of the compaffes in W, and with the other, fet off the diftance W, D, to D, and alfo the fame diftance on each fide of W , towards
a, and b, which will be the vanifhing points for the fides of the neareft (or front) face of the cube B, P, C, F, and its oppofite face A, G, I, H; draw $\mathrm{a}, \mathrm{B}, \mathrm{P}$, and $\mathrm{b}, \mathrm{B}, \mathrm{F}$, and B, f, parallel to $D, \mathrm{~b}$, make B, f, equal to B, i, draw D, f, cutting B, F, in F , draw B, p, parallel to D, a, and equal to B, i, and draw D, p, cutting B, P, in P ; draw a, F , and b, P, meeting in C , then $\mathrm{B}, \mathrm{P}, \mathrm{C}, \mathrm{F}$, will be one face determined; draw $\mathrm{C}, \mathrm{O}, \mathrm{F}, \mathrm{O}$, and P, O, and a, I, cutting P, O, in G, and b, I, cutting F, O, in H, and draw a, H, and b, G, meeting in A, which completes the whole cube.
Fig. 38. No. 2. The only difference between the operations to produce this figure, and the laft, is, that here inftead of finding B, I, B, P, and B, F, the diagonal B, C, is found, by drawing from W, its vanifhing point, through B, and the length of $i t$, by drawing B, c, parallel to D, W, and equal to the geometrical length of the diagonal n, p, (for this cube is fuppofed to ftand on the ground line, and not within, as No. I.) and drawing D, c, cutting W, B, in C .- Befides which, the length of B, I, is alfo found as before, fo that this whole reprefentation of the cube will be produced, by finding the length of two lines only, and thefe determine the lengths of all the reft, by means of the fame vanifhing points that ferved for the other. And in the fame manner, many other cubes might be reprefented by the points already found.
N. B. The length of this diagonal B, C, No. 2, as well as of the line B, I, in both the cubes, might be found by other ways, which are fufficiently explained elfewhere ; however, to give an inftance, as W, D, is fet off to D, the line B, c, might have been drawn parallel to W, D, and then drawing from D, through c , would find the point C ; for it is hewn, in the beginning of this treatife, that the truth of thefe things depends on the parallelifm of the original line with its line of diftance, and not on their direction.
And at No. I, if the diftance O, D, had been turned up on the point O , till that line became parallel to C, D; then B, i, might have been alfo drawn parallel to C, D, and if a, D, had been turned down
on the point a , and b, D, on the point b , both to the line $\mathrm{a}, \mathrm{W}, \mathrm{b}$, then B, p, and B, f, might alfo have been drawn paraliel to C, D.
Fig. 39. Is alfo from Boff; the geometrical is above, which needs no explication :——And for the perfpective (according to him) the horizontal plane in the picture muft be chequered, perfpectively, by means of the point of fight, or center of the picture X , and diftance Z, the ground line E, V, being divided into fix equal parts by the numerical figures, above that line, for feet, correfponding to the fame number in the geometrical; then the line o, X, below, in the perfpective, which is the feat of the line 3 , a, muft be divided perfpectively (to reprefent the geometrical lines above, 0,9 , and marked with the fame figures from 0 , to 9 , inclufive : to effect which, fet it off geometrically on the ground line from o , to V , dividing o, V, by the figures below that line, and from the feveral divifions draw to Z, cutting the line o, X, in $\mathrm{I}, 2,3,-4,5,6,-7,8,9$. Then from each of thofe divifions erect perpendiculars, which muft be made (perfpectively) equal to their correfpondent perpendiculars in the geometrical fcheme above; for inftance, the perpendicular 9 , above, being taken by the compaffes, and one foot fet on E, V, at E , the other foot reaches to the middle of the fquare between 4 , and 5 , (i.e.) four feet and a half; wherefore, on the parallel at 9 , in the perfpective line $0, X$, take $4 \frac{1}{2}$ feet, and at 9 , turn the compaffes up, with that opening, perpendicularly over 9 , which reaches to a, and determines the length of the line $3, a$, and 3 , touching the ground, its place is thereby determined; fo that drawing a, 3 , finds that line, and the perpendicular at 7 , is found in the fame manner, (i.e.) by taking its meafure from the geometrical above, which applied to E, V; appears to be 5 feet $\frac{1}{4}$; and then on the parallel 7 , in the perfpective, taking $5_{\frac{1}{t}}$, and turning up the compaffes (as before) the point b, is found; and thus is found the point c, below; then by joining $c, b,-b, a$, and $3, c$, one fide of the beam $a, b, c, 3$, is found ; then from b , and c , and alfo from 1 , in the perfpective line $0, x$, draw parallels towards E, Z, and from the parallel of the laft, raife a perpendicular to e , and draw e, f, and raile another perpendicular from the parallel of 7 , (i.e.) at k , (in the

line $\mathrm{E}, f, \mathrm{X}$,) equal to $7, b$, which finds the point g; draw e, g, which completes this beam : the parallels, found on this, being continued, will ferve for thofe of the other beam, and with correfpondent perpendiculars, it may be completed. -Then for the crofs bar, perpendiculars from 4,5 , and 6 , in the perfpective line o, X, refpectively meafured, firft in the geometrical, then on the perfpective parallels, will find all the points neceffary, by which the whole is completed.
Fig. 40. Is the fame object reprefented by the method herein propofed, Let the geometrical be either drawn as above, or only the form, and meafures given in words, with the pofition, in confequence of which, draw h, i, (or any other known, or given line) ; and having found S, the center of the picture, and D , the diftance, by means of the terms given, fet off the fame diftance, upwards, from S, to d, and downwards from S , to b , then the angle $\mathrm{d}, \mathrm{D}, \mathrm{b}$, will be a right angle, and the angles S, D, d, -S, D, b, each of them 45 degrees, as will alfo the angles D, b, S, and D, d, S, which is the angle of inclination of the original object with the ground, (as well as with the perpendicular 9,10 , in the geometrical above) wherefore d, is the vanifhing point for i, k, and all its parallels, and b , for l, i , and all its parallels. Draw m, p, on the fame line as h , i , equal to it , and at the diftance given, from it; then draw $\mathrm{i}, \mathrm{d},-\mathrm{h}, \mathrm{d},-\mathrm{m}, \mathrm{d}$, , and p, d, all to the fame point d . And for the length of them, firt draw from D , through m , to M , in the ground line, then draw M , a, (which is to be confidered as an original line) parallel to D, d, and equal to the geometrical length of the originals, which are all equal. Now divide M , a, as 3,10 , (the original above) is divided, (i.e.) in z, and q; and draw $\mathrm{Z}, \mathrm{D},-\mathrm{q}, \mathrm{D}$, and a, D, cutting m, d, in Z, Q, and n , which will be the perfective points anfwering to z, q, and 10 , in the geometrical. Through Z, and Q, draw from b, two lines Z, r, and Q, s, and then cut thefe laft lines from the perfpective divifions of $4, \mathrm{~m}$, found by like means, (explained a few lines lower); and thus the four points, for the crofs beam, are determined, in the plane $4, \mathrm{~m}, \mathrm{n}$.
N. B. o, S, is the feat of A, d, on the plane of the horizon, wobich two lines cut each otber in angles of 45 degrees. perfpeetively, as their originals do geometrically.

The PRACTICE

For the fquares at the bottoms, and tops, draw $b, i,-b, h,-b, m$, and b, p, alfo $b, k,-b, n$; then from g, draw g, h, cutting b, i, in l, and g, p, cutting b, m, in 4 ; drawing alfo from g, through the divirions of p, m, are got thofe of $4, \mathrm{~m}$; for g , is the diftance of the sanibbing point b , (equal to D, b,) and therefore is the vanifhing point of the diagonals $\mathrm{p}, 4, \mathrm{E}_{\mathrm{c}}$. on b, g, the vaniljing line of the plane $\mathrm{b}, l, \mathrm{i},-\mathrm{p}, 4, \mathrm{~m}$, and their parallels. Now draw l, d , and $4, \mathrm{~d}, \& \mathrm{cc}$. Laftly, the crofs beam is finifhed, by drawing its parallels, having before found the feveral points by means of the vanifhing points b, and d; and this completes the whole.
Fig. 41. At the end of this treatife of Bofe a figure is propofed, which he calls a cage, and which is alfo inferted in the Jefuit's perfpective borrowed from this; and, in both, faid to be by the univerfal method of Monf. Defargues. Its excellence confifts in this, that by it the object may be projected as large as the picture, by lines and points all within the compafs of it;-now, befides that it might be more accurately done apart, and transferred to the picture with much lefs than one quarter of the work, and in lefs than one quarter of the time, it may alfo be done within the fame compafs, in a fhorter, and lefs complicated way, and with fewer lines, as follows.

The fame circumftances, viz. fhape, fize, and particular meafures, are given, as are given by Bofe, with its fituation, height of the horizon, diftance, and vanifhing points; all which are expreffed geometrically on the fide, in a fmall fcale from him. The fame letters are alfo ufed throughout, as many at leaft as are neceffary here, that the two fchemes may be more readily compared. Having marked G, the point of fight, or center of the picture, take fo much of the true diftance as comes conveniently into the piature; for inftance one fourth, which is 6 feet (the diftance given being 24) fet it off from G, to Z, on the horizontal line.
A, B, is the ground line divided into 12 feet, draw A, G, and B, G, and rays to G, from 12 , to 7 , inclufive.

Now in order to find any point, as M, which is 17 feet within the picture, and $1^{\frac{\pi}{2}}$ from A, G, towards B, G, as appears by the fmall
geometrical fcheme above, take from A, towards B, $\frac{1}{4}$ of 17 , that is, $4_{4}^{\frac{4}{4}}$ feet, and thence draw to Z, cutting A, G, in R, which will be ${ }_{17}$ feet within the picture, (for if Z, was 24 feet from G, and 17 feet had been taken from A, towards B, a line drawn from Z, $\int 0$ placed to 17 , would have cut A, G, in the fame point R, the proportion being exactly the fame. Then through R, draw a parallel to A, B, and, on that parallel, meafure 1 foot $\frac{1}{2}$ between 7 , and 12 , (which is a perfpective fcale;) transfer that meafure to R, and fet it off from R, to M ; thus the point M , is found.

K , is 29 feet within the picture, and $7^{\frac{1}{2}}$ behind A, G; therefore from A, towards B, take $\frac{1}{4}$ of 29 , which is $7 \frac{1}{4}$, and draw from thence to Z, cutting A, G, in e, which will be 29 feet within;-through e, draw a parallel, and on that parallel meafure 7 feet $\frac{i}{2}$, which meafure carry to e , and fet it off to K ; -then for L , which is 26 feet deep, draw from $6 \frac{1}{3}$ (on A, B,) being one quarter of 26 , to Z, which finds a point in A, G, 26 feet within; and on the parallel drawn through that point, fet off 1_{3} feet $\frac{t}{2}$, being its diftance from A, G, meafured as before; that is, on this parallel take the whole line from e, to its interfection with G, B, which is 12 feet, and add $1 \frac{1}{2}$ of the fame meafure, which will determine the point L .

In like manner for the point I , which is 38 feet within, draw from $\rho^{\frac{1}{2}}$, the middle point between 9 , and 10 , to Z, which will cut A, G, 3^{8} feet deep, and from this laft interfection fet off on the parallel in which it lies $4 \frac{1}{4}$ perfpectively, as before for the others; join $M, K,-$ $\mathrm{M}, \mathrm{L},-\mathrm{L}, \mathrm{I}$, and I, K, which completes the lower fquare of the cage.
The perpendicular fides are all ${ }_{17}$ feet high, wherefore take 8 feet $\frac{7}{2}$, (the half of 17) on the parallel of "each point, M, K, L, and I, and doubling them over each point, refpectively, the four corners, above, are determined, and by a like means the apex is found ; (i. e.) after having drawn the diagonals of both fquares, draw an indefinite perpendicular through both centers upwards; then take, on the parallel of the center of the lower fquare, 13 feet $\frac{1}{4}$, being the height of the apex, above the upper fquare, and mark it on the perpendicular drawn, to
which draw lines from the four corners, this completes the whole ob-ject.-The work is apparently lefs than his, for befides that he makes ufe of a double operation for three of the four angles, merely to find their depth, which are found here by a fingle one, and all the four by the fame method; this double feries of numerical figures, which in his method is neceffary, is apt to confound, and it requires much time, and great care, to divide the lower feries with exactnefs, which is wholly unneceffary in the method here ufed.
Fig. 42. In the fecond Volume of Pozzo, Plate 9, thefe eight pilafters placed circularly are reprefented by his fhorter method, which has been before fufficiently explained. The lines are all left, that the quantity of work may be feen, and none are drawn, but fuch as are neceffary, thofe tending to O, are, drawn only on one fide of B;-becaufe the other fide exactly correfponds; fo that having placed one foot of the compaffes on the point B, the other is to be extended to the feveral divifions, and to be transferred each twice, that is, on both fides of the point C, as the objects are placed at equal diftances from it on either fide ; for inftance, B, I, is fet off from C, both ways, and fo of the reft. Fig. 43. The fame fubject according to the new method. And here the double circle is firft made perfpectively, as has been taught, then at the point of diftance $D^{\frac{1}{2}}$, a geometrical double circle is drawn with one fquare, A, B, in its plane, as a plan of one pilafter, and $D^{\frac{x}{2}}, \mathrm{~A}$, $D^{\frac{T}{2}}, \mathrm{~B}$, drawn, which find a , and b , on the vanifhing, or horizontal line ; thefe would be the true vanifhing points, if $D^{\frac{2}{2}}$, was the true diftance, but it being only half, the diftance C, a, is doubled to a^{2}, and C, b, to b^{2}, which become the vanifhing points, (for the tri-, angle $C, D^{\frac{1}{2}}$, a, being half of, and fimilar to, what the true diftance would produce, c, a^{2}, is the bafe of that triangle); wherefore drawing. a^{2}, S, and b^{2}, S, the perfpective plans of the pilafters 1 , and 5 , are found, and fetting off the fame meafures from C, on the other fide, and thence drawing through S , as before, the plans of 4 , and 8 , two more of the pilafters, are alfo found; but there not being room for the vanifhing points of E, F, the next pilafter in the geometrical plan, (which would complete the whole) another operation becomes neceffary,

$$
1 x^{5}
$$

ceffary, viz, the geometrical place of that pilafter, or its oppofite, muft be found below, as at \mathbf{G}, and reprefented, as was explained in the firft plate of this treatife; the plan of No. 2, will then be found, the fides of which being continued through S, finds alfo the plan of 6 ; the remaining two are found by parallel lines from thofe already done ; for 3 is parallel to 6 , and 7 to 2 ; then the geometrical height is fet perpendicularly from e, to f, and lines drawn from both to C, between which all the feveral heights are found by means of parallels drawn from the bafes or plans cutting e, C ; and perpendiculars from thofe interfections to f, C, and parallels drawn back from the interfections of f, C, complete the whole.
Fig. 44. This is another reprefentation of the fame pilafter, added merely to fhew how little work is neceffary, where room is not wanting for all the vanifhing points ; and this reprefentation is fo eafy to be underftood, merely by infpection, after what has been faid above, that no explanation is neceffary.
Indeed this alone might have been fufficient to have fhewn the practice; but then it might have been objected, that the Fig. 43. was avoided, to conceal the difficulty of this method, when the fpace allotted is too fmall to receive all the vanifhing points neceffary; but for the future, fuch a diftance will be taken, as may admit of all, or moft of the vanifhing points ; both becaufe the work will be clearer, and fhorter, and alfo becaufe a proper place is referved in the fourth part, for the explanation of feveral expedients that may be ufed, in cafes that fhall require them.

The THIRD PART.

THE reader is fuppofed, by this time, to be fufficiently convinced, that the new method is preferable to any former ; therefore no more comparifons will be made, but the new principles conftantly recommended in this treatife will be regularly purfued.

Perfpective is principally exercifed in projecting points and lines, and planes compofed of lines; for folid bodies, of all kinds, are to be projected either by two planes perpendicular to each other, as the ichnography, and orthography, or by that number of planes which compofe fuch bodics refpectively; in either cafe it is neceffary, after having found the vanifhing line of each plane, (the center and diftance of the picture, on which it depends, being always given) to project the feveral lines which form fuch plane. When the whole number of planes are projected, the body or figure is completed by fuch projection, without any further operation; but when only the two planes of the ichnography, and orthography are chofen to be projected, it is neceffary, afterwards, to join their correfponding points, by perpendiculars drawn from them refpectively.

It is apprehended, that the following examples will be fufficient to explain, and illuftrate thefe two manners of projecting objects, perfpectively.

Here it may be proper, more explicitly, to defribe the nature of vanifhing points, and lines, (hitherto occafionally explained) and to fhew how they are generated.

A vanifhing point, is that point, wherein a line, paffing from the eyc, parallel to an original line, cuts or interfects the picture ; and a vanifhing line, is that line wherein a plane, paffing from the eye, parallel to an original plane, cuts or interfects the picture. Thus the point, commonly called the point of fight, or center of the picture, being determined by a line paffing from the eye, at right angles, or perpendicular to the plane of the picture, is the vanifhing point of all

original lines, making right angles with, or which are perpendicular to, the plane of the picture. And when the picture is perpendicular to the plane of the horizon, which is the moft ordinary fituation, the line, commonly called the horizontal line, being formed by a plane paffing from the eye, at right angles, or perpendicular to the 'picture, is the vanifhing line of the horizon, as well as of all other planes parallel to the horizon; but when the picture is inclined to the horizontal plane, in any other than a right angle, then the vanifhing line of the horizon will be higher or lower than the vanifhing line of a plane perpendicular to the picture, according as the picture is inclined backwards or forwards, as fhall be explained hereafter.

And thus, in general, the vanifhing line of any original plane, is that line in which the parallel of fuch original plane (paffing from the eye) cuts the picture.
Fig. 45. Let it be required to reprefent a cube ftanding on a plane, making a given angle with the horizon, (fuppofe thirty degrees) the point of fight, or center of the picture, and the diftance being given. Firft mark the center of the picture S , and draw S, D, parallel to the interfection of the original plane with the picture, and equal to the diftance given; through S , draw S, P, perpendicular to S, D, and from D , draw D, C, making the angle S, D, C, 30 degrees; and cutting S, P, in C , draw d, C, parallel to S, D, which will be the vanifhing line of the plane on which the cube frands; draw D, P, perpendicular to D, C, cutting S, P, in P, and bifect the angle C, D, P, to X, and fet off the diftance (D, C,) of the vaninhing line, d, C, from C, to d, then will the points C, P, X, and d, be all the vanining points requifite for projecting the cubes No. s. and 2, and as many more as may be required, with a fituation, direct, on the plane, whofe vanifhing line is d, C; for draw at pleafure e, f, parallel to d, C, then e, C, and f, C, and d , f , cutting e, C, in g , and g , h , parallel to e, f, which finifhes the lower fquare, then $P, e,-P, f,-P, g$, and P, h, after which draw $\mathrm{X}-\mathrm{h}$, cutting P, f, in l, and the diagonal h, l, will determine the length of f, l; then draw l, C, and l, u, parallel to e, f, then u, C, and the remaining parallel, by which the cube is completed.

The PRACTICE

The fame points' and operation are fufficient for No. 2, or any others. in a like fituation.

For No. 3, the fame lines, with very little addition, (on account of the different pofition of it) are fufficient. This cube is in an oblique fituation on the fame plane; $\mathrm{m}, 6$, is firft drawn at pleafure, and continued to a, its vanifhing point, then the diftance of the vanifhing line, viz. D, C, is fet off from C , to D, then a, D, is drawn, and D, b, at sight angles to it, and fo b, becomes the vanifhing point of m, q, and its parallels; the length of m, q, is taken at pleafure (as was e, f, of No. 1.) but by that all the other lines are determined. Draw q, a, and to find the length, $\mathrm{q}, 5$, bifect the angle a, D, b, to X^{2}; draw $\mathrm{X}^{2}, \mathrm{~m}$, cutting q, a, in 5 ; draw $b, 5$, cutting m, a, in 6 , which finifhes the lower fquare ; draw $P, m,-P, q$, and $P, 6$, and to find their lengths, the diftance of P, b, the vanifhing line (of the plane of $\mathrm{m}, \mathrm{q}, \mathrm{n}$,) muft be found ; therefore draw through S, a perpendicular to P, b, cutting it in C^{2}, which will be the center of that line, and on P, b, as a diameter, defcribe a femicircle, cutting that perpendicular in d^{3}, then P, d^{3}, b, will be a right angle (by 3 I. III. Eucl.) and confequently d^{3}, C^{2}, the diftance, of that vanifhing line; or draw S, D^{2}, parallel to the vanifhing line P, b, and equal to S, D, (the diftance of the piciture) and draw from D^{2}, to C^{2}, (the center of P, b,) and fet off D^{2}, to d^{3}, by placing one foot of the compaffes on C^{2}, and with the other foot defcribing the arc $D^{2},-d^{3}$, at d^{3}, bifect the right angle P, d^{3}, b, to X^{3}, and draw $\mathrm{X}^{3}, \mathrm{q}$, which will find the diagonal q, n, of the Square $\mathrm{m}, \mathrm{q}, \mathrm{n} ;$ draw n, a, and $\mathrm{n}, b, \notin \mathrm{~F}$. and fo complete the cube.
No. 4. Is another cube reprefented by means of the fame vanifhing points, as No. 3, without the addition of one other point or line. But becaufe in fome cafes it may not be fo convenient to make ufe of the diagonals to determine the lengths of lines, the following method is added, which is univerfal. Having drawn from k, to the three vanifhing points a, b, and P, in order to determine the length of any line, as for inftance k , i , (whofe vanifhing point is b , fet off b, D, the diftance of that vanifhing point, on its proper vanifhing line a, C, b,
from D, to the point o, and parallel to that vanifhing line draw k, r, equal to the original of k, i, in that place : Draw o, r, cutting k, b, in i, which will be its perfpective length; make k, t, on the other fide equal to k, r, and, in like manner, fet off the diftance of a, D, to u, on the fame vanifhing line; draw u, t, cutting k, a, in w.-The fame is repeated at z, (i.e.) the diftance P, d^{3}, is fet off to z, on the vanifhing line b, P, to determine one line in that plane, viz. $\mathrm{k}, 7$, for which purpofe the fame geometrical length is placed from k, to 8 , parallel to b, P, and drawing $\mathrm{z}, 8$, cuts it in 7 , the perfpective length.
If it were required to find the plan of one of thefe cubes on the horizontal plane, this might be done by dropping perpendiculars from every point of the cube, as at No. 4, and cutting thofe perperdiculars by lines drawn from vanifhing points found in the horizontal line S, D, by means of perpendiculars from the correfponding vanifhing points of the feveral lines of the projected figure; as for inftance, S, is the vanifhing point P , brought up to the horizontal line, wherefore draw from S, through 7 , the lower angle of the cube (fuppofed to touch the ground) cutting the perpendicular from k, in the point a, which is the feat of the point k, on the horizon; from a, draw to the point perpendicularly (under b,) in the horizontal line, which determines the plan or feat of i ; from a , draw to the point under a, which finds the feat of w; and from thefe two laft found points, the feats of i, and w , draw to the fame vanifhing points, of the horizontal plane, which completes the plan of the upper face, of the cube; and in the fame manner is the plan of the lower face found, and by joining the two extreme points on each fide, the plan of the whole cube is completed.

That of No. 2. is alfo found in the fame manner, but as one whole fide of this cube touches the horizontal plane, it being placed parallel to the horizontal line, and only the point S, ufed, the plan is more fimple. And if it were required to find the plan at any given diftance below, on fuppofition of the object being above, and not touching the horizontal plane, the fame method will anfwer the purpofe; thus, at No. 3, drop a perpendicular as low as required, (e. g.) from N , to M , and proceed as at No. 4, beginning with M.

The PRACTICE

N. B. The funding plans of objects already projected, is by no means an ufelefs curiofity, but in fome cafes abfolutely neceffary, and particularly, in order to the projection of their Jbadows.
Suppofe it required to reprefent an object ftanding on a plane inclined to the horizon, in any given angle, as (e.g.) in an angle of 20 degrees, and on a picture perpendicular to the horizon.
Fig. 45. No. 5. Let S, be the center of the picture; S, D, the diftance, marked on the horizontal line; S, C, drawn perpendicular to S, D; and D, C, drawn fo, as to make with S, D, an angle of 20 , (the required inclination of the original plane, with that of the horizon,) and cutting S, C, in C . Then the angle at C , will be 70 , the complement of 20 , to a right angle, and equal to that which the original plane makes with the picture.

By fuch original plane is to be underftood a plane whofe interfection, with the picture, is parallel to the horizontal line, in which cafe its vanihing line will neceffarily be parallel alfo: wherefore $\mathrm{C}, \mathrm{D}^{2}$, drawn through C , parallel to S, D, is that vanifhing line, and C, D, its diftance, which may be raifed up to its vanifhing line C, D^{2}.

The object, or wedge A, is an example, fhewing the ufe of fuch vanifhing line, the bafe of it is a fquare on the horizontal plane, projected by means of the horizontal line F, S, D. But the upper face of it inclines to the horizon in an angle of 20 , and is, therefore, projected by means of the vanifhing line $\mathrm{C}, \mathrm{D}^{2}$, as appears by the lines of the operation, in the diagram.

But when the original plane (though with the fame inclination to the horizontal plane) is oblique to the picture, then the vanifhing line of that plane will be oblique alfo, and will interfect the horizontal line, as E, D, the vanifhing line of the upper face of the wedge B, which object is, in all refpects, fimilar to A, its pofition only being different, and is projected on its proper vanifhing line E, D, by means of points exactly correfponding to thofe on the vanifhing line $\mathbf{C}, \mathrm{D}^{2}$, for the upper face of the wedge A.

Now, here, though the inclination of the upper face of B, to the plane of the horizon, is still the fame, yet, its inclination to the plane

PlateXIX.

-
of the picture is altered by the obliquity of its pofition; and as the inclination of two planes is always meafured on a third plane perpendicular to both (or which is the fame thing) perpendicular to their common interfection; fo it appears in the diagram, that the angle E, d, F, which meafures the inclination of the upper face of the object B, with the horizon, is equal to C, D, S, which meafures that of the upper face of A.-But that $d, \mathrm{C}^{2}, \mathrm{~S}$, which meafures the inclination of the upper face of B , with the pieture, is larger than $\mathrm{D}, \mathrm{C}, \mathrm{S}$, which meafures the inclination of the upper face of A, witt the picture.

And as the angle $d, \mathrm{C}^{2}, \mathrm{~S}$, is larger than $\mathrm{d}, \mathrm{E}, \mathrm{F}$, fo the angle at d, (the complement of d, C^{2}, S, is neceffarily lefs than that at d , (the complement of $\mathrm{d}, \mathrm{E}, \mathrm{F}$, which angle at d, is the inclination of a plane, to another plane whofe vanifhing line would be $d, \mathrm{~S}$, continued, (i.e.) parallel to D, E, and not to the plane of the horizon.

The vanifhing line E, D, for the upper face of B , is found by bringing down F, D^{3}, (the diftance of the vanifhing line E, F,) to d, on the horizontal line, and drawing d, E, making $\mathrm{F}, \mathrm{d}, \mathrm{E}$, an angle of 20 , and then drawing E, D, which is the vanifhing line required.

For if the triangle F, D^{3}, D, be raifed up on the line $F, S, D, f o$ as to become perpendicular to the picture, and the triangle $\mathrm{E}, \mathrm{d}, \mathrm{F}$, raifed up, with it, on the line E, F, till d , coincide with D^{3}, (in that perpendicular fituation,) then it will be evident that the plane $\mathrm{E}, \mathrm{d}, \mathrm{F}$, will be perpendicular both to the plane of the horizon, and to the plane $\mathrm{E}, \mathrm{d}, \mathrm{D}$, (when in fuch fituation) which plane, being parallel to the original, oblique plane, and cutting the picture in E, D, that line becomes its vanifhing line.

As this part, relating to oblique planes, and efpecially when obliquely fituated with refpect to the picture, is fomewhat difficult, particular attention has been employed to render it as clear, as poffible, and for that purpofe the two principal parts of the laft diagram, are again Separately reprefented, and diftinctly confidered, in the two following fchemes, and with a greater angle of inclination to the horizon. Fig. 45. No.6. F, D, is the horizontal line ; S, the center of the picture; S, D, the diftance of the picture; $\mathrm{E}, \mathrm{D}^{2}$, the vaniming line of a plane in-

The PRACTIC

clined to the horizon in an angle of 40 degrees, and confequently to the plane of the picture in 50 , the complement of $40 ; \mathrm{C}$, the center of that vanifhing line ; C, D, its diffance; $\mathrm{C}, \mathrm{D}^{2}$, the fame diftance raifed up to its proper vanifhing line. This wants no farther explanation. Fig. 45. No. 7. F, D^{2}, the horizontal line; S , the center of the picture ; S, D, the diftance of the picture; E, D^{2}, the vanifhing line of a plane inclined to the plane of the horizon in an angle of 40 degrees, (as is E, D^{2}, No. 6.) but in a different direction, (i.e.) obliquely, with refpect to the picture. For it is inclined to the picture in an angle of 55 , (and not of 50 , as No. 6.)

Now to explain the reafon of this difference, it is to be confidered, that, in this fcheme, No. 7, the circumftances required are, to find the vanifhing line of a plane inclined to the horizon, in an angle of 40 , but with a certain given direction, (i. e.) fo as to interfect the horizontal line in a given point, as D^{2}. -In order to effect which, the firft ftep to be taken is to find the vanifhing line of a plane perpendicular to the line whofe vanifhing point is D^{2}, (becaufe on fucb plane the inclination is to be meafured, as bas been before mentioned,) therefore from S , (the center of the picture) raife a perpendicular $\mathrm{S}, \mathrm{D}^{3}$, equal to the diftance of the picture, and draw the line $\mathrm{D}^{2}, \mathrm{D}^{3}$, and then, perpendicular to it, draw $\mathrm{D}^{3}, \mathrm{~F}$, cutting the horizontal line in F , at which point raife the perpendicular F, E, and this will be the vanifhing line (fought) of a plane perpendicular to the vanifhing point D^{2}, firft given.

F , is the center of this vanifhing line, $\mathrm{F}, \mathrm{D}^{3}$, its diftance; wherefore bring down that diftance to d , on the horizontal line, and there make the angle of inclination required, by drawing d, E; and laftly, draw $\mathrm{D}^{2}, \mathrm{E}$, which is the vanifhing line of the oblique plane required. And this plane inclines to that of the horizon in an angle of 40 ; for if the triangle F, D^{3}, D^{2}, be raifed up on the horizontal line, till it is perpendicular to the picture, and the triangle $\mathrm{F}, \mathrm{d}, \mathrm{E}$, be raifed up at the fame time with it on F, E, till d , and D^{3}, coincide; then the plane F, d, E, will be perpendicular both to the horizontal plane, and to the plane whofe vanifhing line is $\mathrm{E}, \mathrm{D}^{2}$, (for in the fituation defrribed, $\mathrm{E}, \mathrm{D}^{3}, \mathrm{D}^{2}$, or wobich is the fame, $\mathrm{E}, \mathrm{d}, \mathrm{D}^{2}$, will be that plane) and

$$
\because
$$

-

will truly meafure their inclination; therefore thofe two planes are inclined in an angle of 40 , as required.

But as the plane $\mathrm{F}, \mathrm{d}, \mathrm{E}$, is not perpendicular to the picture alfo, it cannot meafure the inclination of the oblique plane with that of the picture.

And as this is to be found by means of a plane perpendicular to both, draw S, C, perpendicular to that vanifhing line, and S, D, parallel to it, and equal to the diftance of the picture, and draw D, C; then imagine the triangle $\mathrm{S}, \mathrm{D}, \mathrm{C}$, raifed up perpendicularly on the line S, C, and the other planes raifed up with it (as before), and, in this fituation, the plane S, D, C, will be perpendicular to both the picture, and the oblique plane, (for D , will then coincide with D^{3}, and d , perpendicularly over S ,) and will therefore truly meafure their inclination, which, thus, is found to be an angle of 55 , and its complement 35 , is the angle of inclination of the oblique plane, with a plane whofe vanifhing line would be D, S, continued, (and not the horizontal plane) but which would be inclined to the horizon in the angle $\mathrm{D}, \mathrm{S}, \mathrm{D}^{2}$; for paffing thro' the center, it is the fame as the real, original, or geometrical angle of inclination. From the two laft diagrams, appears the difference between the relations of an oblique plane, whofe vanifhing line is parallel to the horizontal line, and an oblique plane, whofe vanifhing line interfects the horizontal line.

For at No. 6, the plane S, D, C, (when raifed perpendicularly on the line C, S,) is perpendicular to all the three planes, viz. of the horizon, of the picture, and of the oblique plane ; and therefore meafures. the inclination of any two of them.

But at No. 7, the plane F, d, E, when raifed, fo that d, be perpendicularly over S, is perpendicular to two of them only, viz. to that of the horizon, and to the oblique plane, but not to the picture. And alfo, that the plane S, D, C, (when raifed perpendicularly over the line S, C,) is perpendicular to two only of the three before mentioned; viz. to the picture, and to the oblique plane; but not to that of the hom sizon.

The PRAGTICE

N.B. This laft is alfo perpendicular to a third plane, (though not one of the tbree bere required) viz. to a plane perpendicular to the picture, whofe vanifhing line would be D, S, continued, as was before obferved.
Fig. 46. Here are fome circumftances explained, which were referved for this place, both that the learner might be prepared by what has preceded, and alfo that he might not be embarraffed by too many lines in one diagram. S, is the center of the picture; S, D, the diftance drawn in the direction of an original plane, with refpect to the picture, or in which a vanifhing line is required; S, C, drawn perpendicular to S, D; and D, C, drawn parallel to the inclination of the original plane, (i.e.) making with D, S, a certain given angle (e.g.) an angle of 24 , and cutting S, C, in C; then the angle at C, will be 66 , the complement of 24 , and equal to the angle fuch original plane makes with the picture.

Now thro' C, draw a, C, b, parallel to S, D, which will be the vanifhing line of the original plane, and on which feveral cubes are fuppofed to be placed. Let C, S, be continued downwards; draw D, P, perpendicular to C, D, cutting C, S, P, in P; now fuppofing the plane C, D, P, to be raifed up fo, as that the point D, (which reprefents always the eye of the fpectator) be perpendicular over S, then that plane C, D, P, becomes perpendicular to the picture, and P, the vanifhing point of lines, perpendicular to the planes whofe vanifhing line is a, C, b; therefore any line, as a, P, paffing thro' P , and cutting a, C, b, will be the vanifhing line of a plane perpendicular to a, C, b; but in order to find a third vanifhing line perpendicular to both thefe vanifhing lines already found, the diftance C, D, of a, C, b, is fet off on C, P, at d^{B}; then $a, \mathrm{~d}^{\mathrm{r}}$, is drawn, and $\mathrm{d}^{\mathrm{I}}, b$, perpendicular to it ; and thus b, P, being drawn, becomes the third vanifhing line of planes perpendicular to both the others; for (as was remarked before) any line paffing through P, meeting the vanifhing line a, b, will be the vanifhing line of a plane perpendicular to it; therefore P, b, is a vanifhing line perpendicular to a, b, and it is perpendicular to P, a, by conftruction, a, d^{π}, b, being made a right angle. This vanifhing line P, b,
might have been found, by drawing a, S, and S, D^{3}, perpendicular to it, equal to S, D, (the diftance of the picture) and drawing a, D^{3}, and D^{3}, C^{3}, perpendicular to it; cutting a, S, in C^{3}; then drawing $\mathrm{P}, \mathrm{C}^{3}$, cutting a, b, in $b ;$ as is evident; and $f 0$ of the reft. C, is the center of the vanifhing line a, b, found by drawing a line through S, perpendicular to it, and the point fo found in every vanifhing line, is always called its center, which is to be ufed on fuch vanifhing line in the fame manner, and for the fame purpofes with refpect to the plane which it reprefents, as the center of the horizontal line with refpect to the horizontal plane; and in the fame manner are found C^{2}, the center of a, P, and C^{3}, the center of b, P. - If a circle be defcribed round S, the center of the picture, with the radius S, D, which is the diftance of the picture, as all the radii are neceffarily equal, any line from S, to the circumference will be equal to, or will be properly, the diftance of the picture ; therefore drawing S, D^{2}, at right angles, on the perpendicular b, C^{2}, of the vanifhing line a, P, and drawing C^{2}, D^{2}; it will be the diftance of that vanifhing line.

In the fame manner drawing S, D^{3}, at right angles, on the perpendicular a, C^{3}, of the vanifhing line b, P, and drawing C^{3}, D^{3}, it will be the diftance of that vanifhing line; $S, D,-S, D^{2},-S, D^{3}$, will all be feverally parallel to their refpective vanifhing lines a, b, a, P, -and b, P. Now if D, S, be raifed up perpendicularly over $\mathrm{C}, \mathrm{P},-D^{2-}, \mathrm{S}$, over b, C^{2}, -and $D^{\frac{3}{3}}, \mathrm{~S}$, over a, C^{3}, thefe three points D, D^{2}, and D^{3}, will coincide over S.-Again, if C, D, (which is the diftance of a, b,) be transferred to d^{P}; on C, P, the perpendicular of the faid vanifhing line a, b, and C^{2}, D^{2}, the diftance of a, P, to d^{2}, on its perpendicular: b, C^{2}, and alfo C^{3}, D^{3}, the diftance of $b, \mathrm{P}_{\text {, }}$ to d^{3}, on its perpendicular a, C^{3}, the three points $\mathrm{d}^{5}, \mathrm{~d}^{2}, \mathrm{~d}^{3}$, being raifed on their refpective vanifhing lines $a, b,-a, P,-$ and b, P, fo far as that each be perpendicular over S; there three points will all coincide, not only with each other, but alfo with the three firlt named : D, D^{2}, D^{3}.

The learner is advifed to make all thefe points, and lines, as familiar: to himfelf as poffible, by drawing vanifhing lines in feveral directions,

The PRACTICE

and efpecially three, to reprefent planes at right angles to each other, as in this fcheme, for the projection of cubes, and cubical forms, in all pofitions; becaufe nothing is more neceffary in the practice of perfpective: and if he has underfood all the preceding part, it is apprehended this will not be difficult to him. In order to affiff the imagination a little, let him confider the two cubes, A, and B, one of which, A, is feen direct, the blank parts to be fuppofed on the other fide of the picture, and the lines $\mathrm{n}, l,-l, \mathrm{~m}$, and m, n, to interfect the picture ; thefe three lines may be conceived to be the vanifhing lines of the three planes which form the folid angle of a cube, and m, n, l, the vanifhing points of its fides, or legs. The fame thing is reprefented in B, with this only difference, that it is oblique, as the large fcheme, juft explained; for which reafon, two of the legs cut the picture on this fide of the angles of the cube, and the lines a, b, 一 b, p , and p , a, reprefent thofe three vanifhing lines, in the large fcheme, to which they are refpectively parallel, and are, in both, the vanifhing lines of the folid angle of the cube.

On one fide is a cube E, projected as in the former, but removed out of its place of projection, that the lines might not be confounded with thofe of the fcheme; the reader is to refer it to g, within, which point (correfponding with g , on the figure) the whole is fuppofed to be performed.

Here is a circumftance determined which before was not fuppofed to be required, viz. that it fhould touch the picture in the point g , the body of the figure being behind the picture; to effect which, from the point D, on the line C, D, raife a perpendicular D, G, equal to one fide, or leg of the cube: draw G, F, parallel to C, P, and confequently to the picture. In projecting the cube E , after having drawn g, b, and g , a, (i. e.) fuppofe from g , in the original fcheme, draw g, f, parallel, and equal, to G, F, (which was made parallel to C, P, then draw f, C, tending to C , (i.e.) to the fame vanifhing point, as F, C, and reprefenting a, parallel to it ; draw alfo g, P, cutting f, C, in h, then the line g, h, will reprefent G, D, and be (perfpectively) equal to it, and g , will touch the picture. The reft is performed as has been

of PERSPECTIVE.

fhewn before. All this operation is fuppofed within the fcheme or diagram (as is faid above) beginning at g , and then tranfpofed to E, only to avoid confufion of lines in the great fcheme. The other cube K , is fuppofed to interfect the picture in the lines $5,6,-6,7$, and 7,8 , the reft being fuppofed behind; to reprefent which, another perpendicular H, M, is drawn on C, D, F, fo much before the line G, F , as the cube is fuppofed to be before the picture, the reft behind ; and the fame method is ufed as for the other E , only the triangle $\mathrm{D}, \mathrm{G}, \mathrm{F}$, is here reprefented by d, g, f, within the cube; and, in order to make it advance before the picture, in the proportion required, a line g, t, equal to G, H, is fet off from g, parallel to the vanifhing line a, b; and the diftance C, D, fet off from C , to q : then q, t, is drawn, cutting c, g, in r ; and r, P, cutting C, d, f, in 5 , determines one line of the advanced part of this cube, from which the reft is finifhed ; and when completed, the lines forming the triangular interfection, are refpectively parallel to the three feveral vanifhing lines; the uppermoft paffes through g , determining the other two. This alfo is performed within the fcheme, the point r , there, anfwering to that on the cube, and the whole being tranfpofed to K .

It appears, by thefe projections, that if the meafures, and forms of objects, are known, they may be reprefented without geometrical plans, or elevations, which faves much time and trouble. And if it be required to affign the geometrical fize, and fituation of any figure already projected; as, for inftance, the cube E ; firft draw through f, a line u, w, parallel to the vanihhing line a, b, which line is therefore the interfection of the original plane with the picture (or what is called the ground line;) for it was before mentioned, that g, f, touches the picture ; continue the lines i, h, and $l, \mathrm{~h}$, till they cut u , w , in n , and o; continue alfo m, l, and m, i, to u , and w : then having meafured the angle $\mathrm{d}^{\mathrm{j}}, \mathrm{a}, b$, in the large fcheme, make $\mathrm{u}, \mathrm{o}, \mathrm{L}$, equal to i, for a, is the vaniming point of h, l; draw w, I, parallel to o, L : in like manner meafure the angle $\mathrm{d}^{\mathrm{r}}, b, a$, and make $\mathrm{w}, \mathrm{n}, \mathrm{I}$, equal to it; draw u, L, parallel to n, I, which will complete the figure, or plan, L, I, in its geometrical fituation, and

The PRACTICE

proportion.-Or, to avoid the trouble of meafuring, and transferring the feveral angles, continue $\mathrm{d}^{\mathrm{d}}, \mathrm{C}$, upwards, till c, D^{4}, is equal to C, d^{x}, (which was made equal to C, D,) and make o, L, and w, I, parallel to D^{4}, a; and $u, L,-n, I$, parallel to D^{4}, b, which will anfwer the fame purpofe.

The like operation is repeated for the cube K , on the other fide, tranfpofed from r, (within the fcheme; to which r, on the cube, correfponds, only this cube advancing, in part, before the picture, (as appears by the ground-line v, w,) is larger on that account; and, for the fame reafon, the original geometrical fquare, or plan, is neceffarily cut by the groundline ; in confequence of which the points n, o, are, in the interfection of the original fquare, with the reprefentation. The reft needs no explanation, as the two figures are intirely fimilar.-If this large fcheme appears, at firft fight, overcharged with lines, the reader, who has underftood the preceding rules, will readily perceive that very few of them (only) are neceffary to the projection of the objects reprefented; and that the others are added, partly to exhibit different manners of projecting the fame objects, but principally to fhew the correfpondence, and relation that feveral fyftems of lines have with each other, which, thus, are more evident than if drawn in feparate diagrams, and more effectually illuftrate the nature and ufe of vanifhing lines.
N. B. The whole profile of this fituation of the cube K , is geometrically erected on the line C, D, M, which is taken from d^{*}, where the original plan is defrribed, in the pofition feen by the fpectator, and reprefented in the perfpective, where C, 5 , anfwers to C , d^{d}, in the geometrical plan, and $\frac{1}{2} 5$, to $\frac{t}{2} \mathrm{~d}^{\mathrm{r}}, \& \mathrm{c}$. The lines croffing from the angles (in the geometrical plan) are parallel to the vanifhing line a, b, and confequently to the interfection; and N, M, anfwers to N, M, the fection or profile of the plan.
Fig. 47. In this fcheme the vanifhing line a, b, is ftill more oblique, and croffes that of the horizon, in order to fhew that even in fuch fituation, the manner of finding a plan on the horizontal plane is the

fame as before exhibited, notwithftanding a feeming difficulty arifing from the vanifhing point a, being below the horizon.-The cube A, being projected, as has been before taught, in order to find its plan perpendicularly on the plane of the horizon, firf transfer the three vanifhing points a, b, and P , perpendicularly to the horizontal line, viz. b, downwards; a, and P , upwards, to b , a , and p ; then draw, from the point I , which touches the ground, to a , and to b ; drop a perpendicular from II, to 2 , and raife one from III, to 3 ; then draw from 2, to a, and from 3, to b, which will complete the plan of the lower fquare or face I, II, III, IV; for the interfection of 2, a, and $3, b$, will mark the point 4 , perpendicularly, under IV; now draw from p, through I, and drop a perpendicular from V, interfecting P, I, in 5 , and draw $5, a,-5, \mathrm{~b}$; drop a perpendicular from VI, to $5, a$, cutting it in 6 ; and from VIII, to $5, b$, cutting it in 8 ; draw from 8 , to a, and from 6 , to b, which will complete the plan of the upper face V, VI, VII, VIII; for the point 7 , will be found in the interfection of $8, a$, and $6, b$, perpendicularly under VII; after which, joining I, 5, which is the plan or feat of the line I, V, and 7,4 , the feat of VII, IV, the ichnography of the whole figure is determined on the plane of the horizon, and it will be found, on infpection, that every line, and, confequently, every face, is planned, which is eafily examined by the correfponding figures.

The figure B, is not a cube, but a right angled folid, or parallelopiped, four of whofe faces are parallelograms, as in the geometrical $\mathrm{D}, \mathrm{i}, \mathrm{g}, \mathrm{h}$, on the line C, D, and whofe upper and lower faces are fquares, as appears by the diagonal drawn from x^{1}, which is a bifection of the right angle a, D, b, and whofe fides are equal to h, i; but the depth of the whole figure is only equal to h, g; and, in order to determine that depth, either the angle h, D, g, may be transferred to the vanifhing line of one of the faces, as here to a, P, by making a, d^{\prime}, f, equal to $\mathrm{it},\left(\mathrm{d}^{\mathrm{x}}, \mathrm{c}^{\mathrm{r}}\right.$, being the diftance of that vanifhing line, and drawing f, l, cutting m, P, in n ; and then n, l, will be a diagonal, reprefenting D, h, by means of which the figure may be completed.-Or otherwife, thus: drawing, l, o,

The PRACTICE

parallel to a, P, and equal to g, h; and transferring the diftance P, d^{3}, to e, on the vanifhing line P, a; and drawing e, o, cutting l, p, in q , the length l, q, is determined, by which the reft may be finifhed.

There is another kind of plan which may be projected on the plane of the horizon, by lines perpendicular to the oblique plane, on which the object is fuppofed to ftand; for this the reader is referred back to Fig. 46, at the cube E, where the vanilhing points ufed are S, and t , on the horizontal line in the large fcheme, in which the vanifhing points a, and b, are transferred to that line, by a, P, and b, P, reprefenting perpendiculars to the vanifhing line a, b, of the original oblique plane. Now at the cube E , draw h, s, and h, t, then i, P, and l, P, interfecting them, in 5 , and 6 ; draw $5, t$, and $6, s$, which completes this plan; for as it is formed by the continuation of the fides of the figure which are perpendicular to the plane on which it ftands, the plan of one face is (neceffarily) that of the whole cube; the point h, being fuppofed to touch the horizontal plane.

As cubes, and cubical forms, are apprehended to be more ufeful than any others, as approaching nearer to thofe of buildings, and moft common objects, they have therefore been confidered in many various fituations: the plans projected after the figures themfelves, if not always neceffary, are fometimes fo , as was before obferved, and were exhibited on account of difficulties that had been fuppofed relating to fuch projections. Thus having fufficiently treated of the cube, and there being no more than five regular bodies, or folids, it might be deemed an omiffion wholly to neglect the other four ; wherefore here are given reprefentations of them all, by the vanifhing lines of their faces, and, of feveral, by means of the ichnography, and orthography, alfo, to fhew the different ways of proceeding. On the fide of Fig. 48. is a geometrical defcription of the feveral angles, as well of the fection as faces, of a tetraedron, which muft be underftood before a perfective reprefentation can be made.-G, H, I, is an equilateral triangle (whofe angles are each 60 degrees) the bafe of a tetraedron.- $\mathrm{I}, \mathrm{N}, \mathrm{K}$, is the fection fuppofed to be raifed up, perpendicularly, on the line I, K;

$\#$
in which fituation the angle $\mathrm{I}, \mathrm{K}, \mathrm{N}$, reprefents the inclination of two of the planes or faces; the other two, viz. $\mathrm{I}, \mathrm{N}, \mathrm{K}$, and $\mathrm{K}, \mathrm{I}, \mathrm{N}$, reprefent the angle made by one fide with a plane or face; I, K, is the diameter; and O, N; the axis.
N. B. By referring to this, occafionally, the reafons of the following operations will be better underftood.
Fig. 48. No. 1. The tetraedron A, B, F, E, is thus projected. Firt draw, at pleafure, the vanifhing line $a, \mathrm{~S}, c$; from S , raife a perpendicular to D , the diftance given; let the fide B, A, be alfo given, which continue to its vanifhing point b ; draw D, b : Then make an angle of 60 degrees on each fide D, b, to a, and c; draw B, c, and a, A, cutting B, c, in F; then the bafe, or one face, is finifhed on the plane of a, S, c. -Now find the vanifhing line, c, h, f, of planes, inclining to the face A, B, F, in the angle of inclination of two of the faces; that is, in the angle $\mathrm{I}, \mathrm{K}, \mathrm{N}$; on the fide B, F; that is, on its vanifhing point c; and in it find the vanifhing points e , and f, (c, being already found) and then drawing e, B, and $f, \mathrm{~F}$, the point E , is determined by their interfection; wherefore joining E, A, the tetraedron is completed.
N. B. The angle of inclination of two planes is always meafured, as hath been already faid, on a plane perpendicular to both of them; that is, perpendicular to their common interfection. Now D, c, (if turned forwards with D, S, till D, S, is perpendicular to the picture) is that interfection; therefore draw D, g, at right angles to D, c, and from g, erect a perpendicular (to a, S, c) as g, h , which will be the vanifhing line of planes, perpendicular to D, c, the common interfection; and D, g, being the diftance of that perpendicular vanifhing line, fet it off on either fide of g, as at d; there make the angle of inclination, g, d, b; then draw $c, \mathrm{~h}$, which will be the vanifhing line of the face B, F, E: Find the diftance of this vanifhing line (i. e.) draw from S, a perpendicular to $c, \mathrm{~h}$, cutting it in C , which is its center; fet off S, D, to d, parallel to c, h, then d, C, will be the diftance

The PRACTICE

diftance of that vanifhing line, which transfer to C, D, perpendicular on it; draw c, D, and make c, D, e, and e, D, f, both 60 degrees. If any difficulty remain concerning the diftance of the vanifhing line $c, \mathrm{~h}, f$, let it be conceived that d , and D , are both brought forward, fo as to be perpendicular to the picture over S, then they will coincide, and be the place of the eye; whence it will be evident, that d, C, muft be the diftance of the vanifhing line c, h, f.
The vanifhing line of a plane, perpendicular to another plane, is determined, by finding only the vanifhing point of lines perpendicular to fuch given vanifhing line, becaufe any line, perpendicular to a plane, makes an angle of 90 degrees with that plane every way: whereas a line, cutting a plane in any other angle, (for inftance 30) makes that angle but one way on that plane, wherefore it is neceffary, in order to find a plane at 30 degrees, to take another method: and, for the fame reafon, a plane paffing through a line perpendicular to another plane, will continue always perpendicular, though turned round fuch line every way. But if a plane were to be turned round a line making an angle of $30,8 \mathrm{cc}$. the angle would vary continually, fo as to make every other angle between 30 , and its complement 150 , (i.e. to 180 , or two right angles;) for this reafon, it becomes neceffary, in order to find the vanifhing line of a plane interfecting another plane at 30 , (or any other angle except 90 ,) to find, firft, the vanifhing line of a plane, perpendicular to the interfection of the two planes, whofe inclination is fought, on which to meafure that angle of inclination, otherwife it cannot be truely found.
Fig. 48. No. 2. N. B. In this fcheme, B, C, G, is the vanißhing line of the plane perpendicular to E, which is the vanifhing point of the interfection of the planes B, E, and E, C, inclined to each other in 30 degrees; B, A, C, the geometrical angle of 30 degrees; G, A, (equal to G, D,) being the diftance of the vanifhing line B, C, G; fo that if D, S, be raifed up perpendicularly over S, and

the $\operatorname{arc} \mathrm{A}, \mathrm{D}$, together with it; and alfo if the triangle $\mathrm{B}, \mathrm{A}, \mathrm{C}$, be raifed on the line B, C; the point A , will move along the $\operatorname{arc} A, D$, till A, coincide with D, which is the true fituation; then will $\mathrm{B}, \mathrm{A}, \mathrm{C}$, be a plane perpendicular to D, E, the interfection of the two planes B, E, and C , E .
No. 7. of Fig. 45.-S, is the center of the picture; S, D, the diftance; the line $\mathrm{A}, \mathrm{S}, \mathrm{D}$, is a vanifhing line of planes perpendicular to the picture; and $\mathrm{E}, \mathrm{D}^{2}$, another vanifhing line, parallel to $\mathrm{A}, \mathrm{S}, \mathrm{D}$; but of planes inclining to the planes, whofe vanifhing line is A, S, D, in the angle $S, D, C .-F, D^{2}$, is the horizontal line.

It is required to find the angle of inclination, of the plane of the horizon, with the planes whofe vanifhing line is $\mathrm{E}, \mathrm{D}^{2}$, and the difference of the angles of inclination, between that of A, S, D, to E, D^{2}, and that of F, D^{2}, to the fame E, D^{2}.

Set off the diftance of the picture S, D, to D^{3}, perpendicular to the horizontal line; draw D^{2}, D^{3}, and D^{3}, F, perpendicular to it; at F, raife the perpendicular F, E, cutting D^{2}, E, in E; then E, F, will be the vanifhing line of planes, perpendicular to both the planes of $\mathrm{E}, \mathrm{D}^{2}$, and $\mathrm{F}, \mathrm{D}^{2}$; from F , fet off $\mathrm{F}, \mathrm{D}^{3}$, (the diftance of the vanifhing line E, F, to d, on the horizontal line. Now draw d, E, and $\mathrm{E}, \mathrm{d}, \mathrm{F}$, will be geometrically the angle of inclination fought; (i.e.) of the plane of the horizon, with the planes whofe vanifhing line is $\mathrm{D}^{2}, \mathrm{E}$, which was the firf thing required.

And this angle E, d, F, is larger than $\mathrm{S}, \mathrm{D}, \mathrm{C}$, by 5 degrees, ribich was the fecond thing required.
N.B. The angle of inclination of the planes of A, S, D, and $\mathrm{F}, \mathrm{D}^{2}$, is $\mathrm{A}, \mathrm{S}, \mathrm{F}$, or $\mathrm{D}, \mathrm{S}, \mathrm{d}$, the real geometrical angle, made by their interfection, on the picture; becaufe they both pafs through S, and are therefore both perpendicular to the picture.
The reprefentation, Fig. 48, No. I, was formed entirely by vanifhing lines; but the principles are fo general, that many other methods
may be ufed, fome of which are fill fhorter in particular cafes; as an inftance, here is added one other projection of the fame object, with one vanifhing line only.
Fig. 48. No. 3. After having found the face $A, B, F, N o .2$, as before at No. I, draw B, a, and c, A, meeting in 1 , and F, b, and A, c, meeting in 2 ; draw $1, F$, and $B, 2,3$, whofe interfection O , will be the center of the face $\mathrm{A}, \mathrm{B}, \mathrm{F}$; erect a perpendicular at 0 , and, at 3 , raife the perpendicular 3,4 ; fet off $3, \mathrm{D}$, (the diftance of the vanifhing point 3 ,) of either fide, on the vanifhing line $a, \mathrm{~S}, \mathrm{c}$, as at e ; draw e , 4, making the angle $3, e, 4$, equal to $\mathrm{O}, \mathrm{I}, \mathrm{N}$, and cutting the perpendicular 3,4 , in 4 , which will be the vanifhing point of the fide $B, 5$; and the line $4, B$, will cut the perpendicular 0 , 5 , in the apex; from whence draw to A , and to F , by which the whole is completed.
N. B. $e, 4, f$, reprefents the fection $\mathrm{I}, \mathrm{N}, \mathrm{K}$, in the geometrical.
Fig. 49. For the octaedron, make an equilateral triangle R, F, G; draw its diameter F, L; on R, G, defcribe a fquare ; draw the diagonal R, H, and from H , and R , with the radius F, L, defcribe two arches interfecting each other in I ; then the angle $\mathrm{R}, \mathrm{I}, \mathrm{H}$, will be the angle made by two planes, or faces of the octaedron on the infide ; and the angle $\mathrm{K}, \mathrm{I}, \mathrm{H}$, will be the angle on the outfide, or (properly) the angle of inclination, and to be ufed in projecting this figure; for R, H, is the axis of the folid, and $\mathrm{R}, \mathrm{I},-\mathrm{H}, \mathrm{I}$, the diameters of two faces meeting in I .
Fig. 49. No. 1. To project the octaedron, perfpectively, a, S, c, is the given vanifhing line of the plane on which it refts; $\mathrm{A}, \mathrm{B}, \mathrm{a}$ given fide of the figure, continued to its vanifhing point a; make S, D, equal to the diftance given; draw the lines a, D, and D, b, making with a, D, an angle of 60 degrees; and D, c, making the fame angle with D, b; then draw A, c, and B, b, cutting A, c, in E, which finifhes the face on which the folid refts; then find the vaniming line of one other face, (which will be all that is neceffary;) and, in order to it, find k , the vanifhing point of lines perpendicular
to the lines whofe vanifhing point is a; (i.e.) draw D, k, perpendicular to a, D, cutting a, S, c, in k ; draw k, l, perpendicular to a, S, c; find its diftance k, m, by fetting off K, D, to m; from m , draw a line downwards to l, making an angle $\mathrm{k}, \mathrm{m}, l$, equal to $\mathrm{K}, \mathrm{I}, \mathrm{H}$, (in the geometrical) with the line $a, \mathrm{~S}, \mathrm{c}$; which line $l, \mathrm{~m}$; if continued uproards, woould make an angle with the fame line a, S, c, equal to the inner angle of the inclination of two faces; then draw l, a, which is the vanifhing line fought; find its diffance C, D, (i.e.) draw S, C, D, perpendicular to l, a; fet off the diftance S, D, to d, parallel to l, a; then fet off the diftance d, C, from C , to $D:-l, a$, thus found, is the vanifhing line of the face $\mathrm{A}, \mathrm{B}, \mathrm{h}$, and its oppofite $g, \mathrm{E}, \mathrm{i}$. Now find the vanifhing points, as directed above in the laft figure; then draw e, A, and B, f, cutting it in h; then h, b, and h, c, and e, E, cutting h, c, in i; draw i, a, cutting h, b, in g; draw $g, \mathrm{~A},-\mathrm{g}, \mathrm{E}$, and i, B, which will complete the whole. Fig. 49. No. 2. Is a reprefentation of the fame figure ftanding on one of its points, or folid angles, with very few lines. For this projection, firft draw any one given fide 1,3 , to its vanifhing point a; find b , the vanifhing point of lines perpendicular to thofe, whofe vanifhing point is a, and draw I, b; then draw 3, b ; bifect the angle $a, \mathrm{D}, \mathrm{b}$, to 0 ; draw o, i, cutting $3, \mathrm{~b}$, in 4 ; draw $a, 4$, cutting i, b, in 2 , which finifhes the fquare $1,2,3,4$; at 0 , drop a perpendicular; fet off the diftance o, D, to e; thence draw e, p, making with o, e, an angle of 45 ; and, having found the center of the fquare 1, 2, 3, 4, and drawn a perpendicular through it, draw p, 1 , cutting that perpendicular below in 6 , and p, 4 , cutting it above in 5 ; from thefe two extreme points of the axis, draw to $1,{ }^{\circ} 2,3,4$, which will complete the whole. For $1,5,4,6$, reprefents a fquare (as well as $\mathrm{I}, 2,3,4$;) and $\mathrm{o}, \mathrm{e}, \mathrm{p}$, being half a fquare, the angles are rightly found.
Though the octaedron may be projected in this pofition with fo few lines, yet as projections, by means of the ichnography and orthography, are proper in many cafes, the manner of confructing and ufing them is here explained in the fame example.

The PRACTICE

Suppofe then, No. 3, the fide 1,3 , only given; draw from its vanifhing point a, any line, where there is convenient fpace, as $a, 7,8$; and from b, the vanifhing point of lines perpendicular to thofe whofe vanifhing point is a, draw through 3 , and I , of the line given, cutting the line $a, 7,8$, in 7 , and 8 ; then, through a, draw f, g, perpendicular to $a, \mathrm{~S}, \mathrm{~b}$; fet off the diftance a, D, to e , and draw e, f, upwards, making (with e, a, half the angle $\mathrm{R}, \mathrm{I}, \mathrm{H}$, (in the geometrical) and e, g, making the fame with e, a, downwards, fo that the angle f, e, g, be equal to the whole inner angle $\mathrm{R}, \mathrm{I}, \mathrm{H}$. Now draw $f, 8$, and $g, 7$, meeting in 9 ; and $f, 7$, and g, S, meting in 10 ; which will form the perfpective of the profile, or orthography. The plan or ichnography is fo eafy to be underfood by infpection, being only the reprefentation of a fquare, that it needs no defcription in words.

Now perpendiculars, from the correfponding points of ichnography and orthography, will meet in the feveral points which form the figure; and, by joining thofe points, the figure is completed; (e. g.) drawing from the point 8 , to b, and raifing perpendiculars from I , and 2 , of the plan, meeting $1, b$, in I, and 2 , the points 1 , and 2 , in the figure itfelf, are found; and fo of 3,4 ; and by raifing a perpendicular from the center of the plan, and cutting it by lines (tending to b,) from 9 , and 10 , of the profile, the points 5 , and 6 , in the figure, will be found alfo, by which it is completed.
N. B. From ichnography, the perpendiculars are geometrically fuch; but from orthography, perfpectively fuch.
This manner of projecting the orthography, is one of the great advantages of the new principles; for, according to the old, the geometrical orthography of this figure would not have been fo funple; nor, indeed, would it have been any regular figure; and in architecture (where many members are to be reprefented) the orthographic projections for oblique fituations are fo confufed, as to be fcarce intelligible, and give no idea of the thing intended to be reprefented; for proof of which the reader is referred to Pozzo's fecond Volume. -The geometrical orthography is drawn above, by which it is evident that

-
the profile, here made ufe of, is the fame kind of figure, having the fame lines and angles perfpectively.

And, on theefe principles, the orthograpliy may, in all poffible fituations, be fuch plain, fimple, and regular draughts, as an architect would make, for an elevation, with no other change than what the perfpective neceffarily produces, which never exhibits the figure of any object, otherwife than as feen in nature, fuppofing always the fame fituation of object, and fpectator, as required in the picture.

To fhew what expedients this general method affords, and how extenfive the principles are, there is added another orthography of this figure, which reprefents a perfect fquare, with the two diagonals: In fome cafes this orthography, and in fome the other, may be moft convenient, according to the diftances of the vanifhing points. To project the figure by this orthography, let a diagonal 4, I, (No. 4.) be given, whofe vanifhing point is o. Draw any where from 0 , at a convenient diftance; for the orthography, another line $0,4, I$; find h, the vanifhing point of lines perpendicular to thofe, whofe vanifhing point is 0 ; draw $h, 4,4$, and $h, 1,1$, this determines the diagonal of the orthography; then find the vanifhing point of lines, making 45 degrees with this diagonal ; (i.e.) find the center c , of p, q, the vanifhing line of the orthography, and its diftance c, D^{2}; draw D^{2}, o, and then make an angle of 45 above, and below the line o, D^{2}, to q , and r ; for o , is the vanifhing point of the diagonal, and o, D^{2}, the diftance of that vanifhing point; and from thefe two points q, and $\cdot \mathrm{r}$, finifh the orthography (as was done from f, and g, in the laft figure); then draw from a, to I , and from b , through 4, of the firft given diagonal, which will determine the fide 3 , 1 , in its place; then draw from 3, and from 1 , to p, and another line, $a, 3,1$, below for the ichnography, which complete, by drawing $3, \mathrm{~b}$, and I, b, and $\mathrm{h}, 3$, cutting I, b, in 2 , and $a, 2$, cutting $3, \mathrm{~b}$, in 4. Now through this ichnography, drawing from p, perfpective perpendiculars, thefe will determine all the points, as the geometrical perpendiculars did in the former figure. Laftly, lines from h, to the orthography, and from p , through the ichnography, will cut each
other, refpectively, in the correfponding points, to complete the figure.

This is again reprefented, under all the fame circumftances, with a little difference in the pofition, only, at No. 5 ; in which h, o, b, is the vanifhing line of the plane $1,2,3,4,-0, p$, of the plane $1,5,4,6$, and p, h, of the plane $3,2,6,5$, which are perpendicular to each other ; as are the planes that form the folid angle of a cube.

Thefe are on an oblique plane (the center of the picture being S,) which is the reafon that the perpendiculars to the fquare $1,2,3,4$, tend to p ; whereas in that, at No. 3, thofe perpendiculars were parallel to each other, the figure there being on the horizontal plane; but if in that the octaedron had been feen in front, fo that the lines $\mathrm{r}, 2$, and 3, 4, had been parallel to the horizontal line a, b, the perpendiculars from the orthography would alfo have been all parallel to that line, and to each other. _The orthography of No. 3, is a fection through the axis, parallel to one fide 2,1 , or 4,3 ; that of the laft, No. 4 , through the axis, and diagonal ; fo that here both plan and profile are fquares. N. B. Though No. 4. might have been projected, in its fituation, without either orthography, or ichnography (by means of the feveral vanifhing points) yet as, in more complicated objects, this method is very expedient, it was thought proper to fhew it, firft, in fo fimple a figure, that it might be the more eafily comprehended.
Fig. 50. For the reprefentation of a dodecaedron, by vanifhing lines only. Having the center of the picture S, and diftance S, D, given, draw at pleafure the vaniming line of the plane of one face; and having found the center, and diftance of that vanifhing line, erect the diftance perpendicularly to that line from that center, and there find the feveral vanifhing points of the face propofed: this is the general method. Here the face a, b, c, d, e, is chofen, which being fuppofed to lie on the horizontal plane, the vanifhing line paffes through S, and the diftance of the picture S, D, is (in this cafe) the diftance of the vanifhing line; draw at pleafure b, c, for one fide of the face propofed, which if it be not parallel to the vanifhing line, continue till it cuts that line, and from

fuch interfection draw to D, and thence find the vanifhing points; but as b, c, here, is parallel to the vanifhing line, draw through D , another parallel, and make the feveral angles neceffary to produce the vanifhing points; (i.e.) defcribe a pentagon at D , in the pofition required, and divide it into triangles; continue $\mathrm{DE}, \mathrm{DC}, \mathrm{DB}$, and DA , to the vanifhing line, cutting it in $1,2,3$, and 4 , which are all the vanifhing points neceffary: then draw $2, b$, for $\mathrm{D}, \mathrm{C}, 2$, is parallel to B, A; and draw $3, c$, for $\mathrm{D}, \mathrm{B}, 3$, is parallel to E, C : then draw I, c, cutting $2, b$, in a, for $\mathrm{D}, \mathrm{E}, \mathrm{I}$, is parallel to C, A; and draw $4, b$, cutting $3, c$, in e, for DA, 4 , is parallel to BE: laftly, draw I, e, and $4, a$, meeting in d, which finifhes the face b, c, e, d, a.

For the next face, find the vanifhing line of planes inclined to that of the face already defcribed in the fame angle as the faces of a dodecaedron are to each other, (i. e.) 63 deg. 30 min. externally (the angle within being $116 \mathrm{deg} .30^{4} \mathrm{~min}$. the complement of 63 deg .30 min . to two right angles*. Now draw D, x, perpendicular to 4, D; from x, drop a perpendicular (to the vanifhing line $4, S, 1$, before found); fet off the diftance x, D, to d; draw d, p, making with x, d, an angle of 63 deg. 30 min . and cutting x, P, in P , which line will confequently form an angle of 116 deg. 30 min . with the horizontal line, if continued upwards ; then draw 4, P, which is the vanifhing line fought; wherefore find its center C^{3}, by drawing through S , perpendicular to $4, \mathrm{P}$; find its diffance C^{3}, D^{3}, (by taking the diftance S, D, in the compaffes); then fetting one foot in C^{3}, and the other at Y, in the fame line, and from Y , to S , will be the diftance, which tranfer to C^{3}, D^{3}) ; draw 4, D^{3}, and find the feveral vanifhing points on this vanihing line, as on $4, \mathrm{~S}, \mathrm{I}$, by making the fame angles at D^{3}, as at D , (i.e.) of 3^{6}

Fig. 50. No. 2. *The angle of inclination of two faces of the dodecaedron is found, by making a regular pentagon, and drawing any diagonal, as a, a; then bifecting that diagonal in A, and raifing a perpendicular A, B, to the oppofite fide, bifecting that fide in B; and then with the diftance A, B, as radius, defcribing the arcs a, b, and a, b, meeting in b, and producing a, b, to E , the external angle E, b, a, is the angle of inclination fought.

For if on the real folid any two parallel diagonals are drawn on two adjoining faces, and thefe diagonals are bifected, and perpendiculars drawn from each point of bifection to the fide of contact, thefe perpendiculars will form the inner angle of 116 deg. 30 min . (very neary) : and the external angle of 63 deg .30 min . is the angle of inclination.
degrees each, and proceed as before, for the firft face; that is, taking a, d, here, for the given fide, becaufe 4 , is its vanifhing point, in the plane of $4, C^{3}, P$, as well as in that of $4, S, F$, the point 4 , being the interfection of the vanifhing lines of thofe two planes; draw $6, d$, and $7, a$; then $5, a$, cutting $6, d$, in f, and $4, f$, cutting $7, a$, in g; but 8, being too far diftant to come within the picture, (inftead of drawing $8, f$, and $5, g$, meeting in h, as in the firft face) draw $5, g$, and $6, a$, cutting it in $b:$ laftly, join b, f, which finifhes this face.

Now draw a line through 2, 7 , which will be the vanifhing line of the face a, b, g, i, s, for 2 , is the vanifhing point of a, b, and 7, of g, a, both of thefe being fides of this face, (and two points in any right line being given, the line is thereby given) ; and having found the center C , and diftance D^{2}, of that vanifhing line, with its vanifhing points 9 , and 10 , by the fame operation as the laft, draw $g, 10$, and $7, b$, cutting it in i; draw $i, 9$, and $g, 2$, cutting it in s; laftly, join s, b, which finifhes this face.

If it bad been neceffary to bave found tbis vanibing line (for want of a fecond point) the fame metbod muft bave been ufed as for the other, excepting that the perpendicular mulf bave been drawn uprards, and the angle taken on the upper fide of the vanijbing line, 4, S, 1, and from thence a line muft have been drawn cutting the faid perpendicular, becaufe tbis vanibing line (by the fituation of its original plane) muft neceffarily make its acute angle, or angle of inclination, above the horizontal line.

Now draw $10,3,5$, which will be the vanifhing line of the face g, b, i, k, l, for 5 , is the vanifhing point of g, b, and 10 , of g, i, and find the other vanifhing point 11 , of that vanihhing line (for 3 , through which it paffes, was before found); draw II, i; then draw $11, g$, and $5, \mathrm{I}$, cutting it in l, and $l, 3$, cutting $11, i$, in K ; laftly, join l, h, which finifhes this face.

Thus having got two lines, i, k, and i, s, (of the next face, i, k, m, t, s, , whofe vanifhing points are 11 , and 9 , draw through thofe two points the vanifhing line of this face, which will alfo pals through 1 , and 6 , the remaining vanifhing points; draw $k, 1$; then draw $k, 9$, and i, I, meeting in t; draw $6, t$, cutting k, I, in m; laftly, join s, t, which finifhes this face.

The

The uppermoft face $k, l, m, n, 0$, being paralliel to a, b, c, d, c, has, of confequence, the fame vanifhing line, of which face the lines k, l, and k, m, being already drawn, draw $4, m$, and $l, 1$, cutting it in n, and draw $2, n$; laftly, draw $l, 0$, parallel to b, c, which finifhes this face.

The remaining four faces are oppofite, and parallel to four, on the other fide, and are therefore drawn by means of their refpective vanifhing lines; the face d, e, f, r, q, is oppofite and parallel to i, k, m, t, s; the face c, e, q, u, w, is oppofite and parallel to g, b, i, k, l; the face r, q, w, n, o, is oppofite and parallel to a, b, s, i, g; and the face t, m, n, w, u, is oppofite and parallel to a, d, f, b, g : the fame vanihing points, and the fame manner of proceeding, determines all the points, and lines of thefe four, as of their oppofites, though in contrary pofitions, and thefe compleat the dodecaedron.

There is one other dodecaedron on the fide, which is projected by the fame vanifhing points.
Fig. $\mathrm{f}^{\text {I. No. I. In order to reprefent an icofaedron, the fifth and laft of the }}$ regular folids, which is compofed of 20 equilateral triangles, let one fide 3,4 , be given, with its vanifhing line a, b, c, and diftance S, D. Continue the given fide to its vanifhing point a; draw a, D, and find the vanifhing points b and c, by making a, D, b, and b, D, c, angles of 60 degrees; draw $3, b$, and $4, c$, cutting $3, b$, in 2 , which determines one face $4,3,2$; then through a, find the vanifhing line of planes, inclining to that of a, b, c, in the fame angle as the faces of an icofaedron to each other (viz. 42 degrees) being the acute angle without, (the complement of ${ }_{1} 8$, the obtufe angle within ${ }^{*}$,) by drawing D, q_{0} perpendicular to a, D, and q, p, to a, b, c, which will be the vanifh-

Fig. $5^{1 .}$ No. 2. *The angle of inclination of two faces of the icofaedron is found, by making a regular pentagon, and on one fide defrribing an equilateral triangle, and having drawn a diagonal of the pentagon, a, a, and the diameter of the triangle, as A, B; then taking A, B, for radius, and defcribing the arcs a, b, and a, b, meeting in b, and producing a, b, to E, the angle E, b, a, is the angle of inclination fought.

For, on the real folid, five equilateral triangles form a pyramid, whofe bafe is a pentagea; therefore a diagonal of that pentagon will be the bafe of a triangle, whofe legs (being the diamerers of two of thefe equilateral triangles) will form the internal angle of 138 deg . (nearly) : and the external angle of 42 deg. is the angle of inclination.

The PRACTICE

ing line of planes perpendicular to the lines, whofe vanifhing point is a; then fetting off the diftance of that vanifhing line (which is q, D,) to r, and from r, drawing r, p, making with q, r, an angle of 4^{2}, and then drawing a, p, that will be the vanihing line fought. To find the center C , and diftance C, D^{2}, of this vanifhing line, draw a, D^{2}, and find the other vanihhing points of an equilateral triangle, as was done on the firft vanifhing line, a, b, c, viz. here, n, and o; now draw $n, 4$, and 0,3 , cutting $n, 4$, in 5 , which determines the face $3,4,5$.

Then find, in the fame manner, the vanifhing line c, k, i, for the face $4,2,11$, with this difference, that, as the former $a, n, 0$, was taken below the firf vanihing line a, b, c, becaufe the face $3,4,5$, comes forward, with refpect to $3,4,2$, this falls backward, with refpect to the fame face, and muft therefore be drawn above a, b, c; and having found the vanifhing points, as in the others, draw $2, i$, and $4, k$, cutting $2, i$, in II, which finifhes this face.

Then through b, the vanifhing point of the fide 3,2 , find another vanifhing line e, b, f, for the face $3,2,10$, and in it the points e, and f, as in the former vanifhing lines, and draw $e, 2$, and $3, f$, cutting it in 10 , which finifhes the face $3,2,10$, as the line D , a, (perpendicular to b, D,) goes beyond the picture, take S, d, a fourth of S, D, and draw a parallel to D, a, and proceed as if this 4 th was the whole difance, till you find the vanifhing line; then from b draw a parallel to the vanifhing line, which parallel will be that fought. The perpendicular is taken downwards, viz. a, f.

Through e, the vanifhing point of 2,10 ; find another vanifhing line; but as e, b, f, (in which is the point e, does not pafs through S, draw e, S, and proceed on it as before, on the vanifhing line a, b, c, which will produce the vanihing line e, g, b, for the face $2,10,12$, which is determined, by drawing $10, g$, and $2, b$, cutting $10, g$, in 12; and now join 12, 11, which finifhes another face, 2, 12, 11 .

Then through f, the vanifhing point of the fide 3,10 , find one more vanifhing line, f, l, m, for the face $3,10, \mathrm{I}$, by the fame procefs, as the laft; and, having found the vanifhing points, draw $m, 3$, and $l, 10$, cutting $m, 3$, in 1 , which finifhes that face.

Then

Then draw from l, through 11 , for the fide 11,6 , is parallet to 1,10 ; draw $5, g$, cutting 11,6 , in 6 ; then $e, 6$, and $5, b$, cutting $e, 6$, in 7 , which finifhes the face $5,6,7$, oppofite, and parallel to $2,10,12$; join 6, 4, this determines the face $4,5,6$, (which, here, happens to fall in one line) and alfo the face $4,6,1$.
Draw $6, f$, and $7, b$, cutting $6, f$, in 8 , which finiffes the face $6,7,8$, oppofite and parallel to $2,3,10$.

Draw $a, 8$, and $7, c$, cutting $a, 8$, in 9 , which determines the upper face oppofite and parallel to $2,3,4$; join $9,10,-9,1,-$ $9,12,-8,1 \mathrm{I}$, and $8, \mathrm{I} 2,-5,1$, and $7, \mathrm{I}$, which finifhes the forwardeft face, $1,5,7$, and completes the whole figure.
$2,3,4$, and $7,8,9$, being oppofite and parallel, their vanifhing line is the fame, viz. a, b, c.
$3,4,5$, and $8,9,12$, being oppofite and parallel, their common vanifhing line is $a, n, 0$.
$2,4,11$, and $\mathrm{I}, 7,9$, being oppofite and parallel, their common vanifhing line is c, k, i.
$2,3,10$, and $6,7,8$, being oppofite and parallel, their common vanifhing line is e, b, f.
$2,10,12$, and $5,6,7$, being oppofite and parallel, their common vanifhing line is e, g, b.
$3,1,10$, and $6,8,11$, being oppofite and parallel, their common vanifhing line is f, l, m.
Fig. I. Below is a reprefentation of the fame folid, projected without any other vanifhing line than that of the horizon, and alfo without ichnography, or orthography, any farther than the geometrical draught of a decagon, or double pentagon A, and the axis of the folid marked $0,1,2,3$, which axis is divided by taking 0,1 , equal to a fide of the decagon, 1,2 , equal to radius (or a fide of the hexagon), and 2,3, equal to 0,1 , in which divifion the middle part $I, 2$, with either end, will be in extreme and mean proportion. Prop. 9. Book 13. Euclid. N.B. A line is faid to be cut in extreme and mean proportion, when the whole is to the greater fegment, as the greater fegment is to the lefs. Def. 3. Book 6. Euclid.

Firft

Firft draw the axis perpendicular to the horizon, and mark the divifions; then through I, and 2, draw tranfverfe lines, (i.e.) parallel to the horizon, and on them mark the length c, b, on one fide, and c, a, on the other, but contrariwife; then fet off the diftance on the horizontal line, from S , the center of it, to d, and from d, draw through each extremity of the tranfverfe lines, cutting the axis; and the points in which that is cut will determine the depth of each pentagon; the pricked line paffing through 2 , is fo divided. The fide $b, 2$, towards d, being equal to b, c, in the plan, and the fide $2, a$, equal to c, a, and the line drawn through I , contrariwife, (i.e.) c, a, towards d, and c, b, on the oppofite fide; draw d, a, cutting the axis in g, and d, b, cutting it in k; after which, find the vanifhing points of the fides of the pentagon, $4,5,6,7$, by drawing from D, (below) $D, 4,-D, 5, \& c$. making $4, D, 5$, an angle of 36 degrees, and the fame angle with $5, D, 6$, and $6, D, 7$, which are all the vanifhing points neceffiry: then, parallel to the horizontal line, draw b, i, through k, the point in which d, b, interfects the axis, and draw $6, g$, and $5, g$, cutting b, i, in b, and i; then $b, 5$, and $i, 6:$ laftly, $4, g$, and $7, g$, cutting $i, 6$, in b, and $b, 5$, in a, which finifhes the lower pentagon. The upper pentagon is determined in the fame manner, and by the fame points, with this only difference, that the operation is reverfed, in order to produce a contrary pofition. After which the whole icofaedron is completed, by joining the refpective points of the two pentagons, and drawing from the fame points to the two poles of the axis. All which may be performed with lefs trouble, and in lefs time, than is requifite to form the geometrical ichnography, and orthography. Here is added another on the fide, projected by the fame points, only infead of drawing d, b, cutting the axis (as in the former) a pricked line is drawn through the axis from S, which being cut, from $d_{\text {s }}$ ((the diftance) through b, finds k, the middle of b, i, and from d, to a, finds g, and fo for the upper pentagon.
Tig. K. In order to reprefent this figure, by the fame method, on an inclined plane; Draw the vanifhing line of fuch plane C, E, and from S, draw S, D, parallel to it; join C, D, and make D, P, perpendicular

to it: draw at pleafure $\mathrm{P}, \mathrm{G}, \mathrm{B}$; draw B, f, parallel to D, P, and equal to 0,3 , the axis at figure A, which divide in I , and 2 , according to the geometrical proportion; then from D , draw to thofe divifions, cutting B, G; thefe interfections determine the axis according to the perfpective proportion. Draw from C , lines through the two intermediate points of B, G; and, in order to find their refpective lengths, fet them off geometrically on C, D, from D , to b, and to a; that is, make D, b, equal to c, b, and D, a, equal to c, a; and on D, P, fet of: D, b, equal to $0, \mathrm{I}$; then drawing b, a, and D, a, paraliel to it, a, will be a vanihing point (in the vanifhing line P, S, C,) from which the axis, and tranfverfe line, will be divided in the proportion of D, b, to D, a; wherefore, by drawing a, G, and a, B, the two tranfverfe lines will be cut, the lower backwards, the upper forwards; in that proportion. D, g, is equal to D, b; fo that drawing g, b; and D, m, parallel to it, m, will be the vanifhing point dividing the fame axis, and tranfverfe lines, in the proportion of D, g, to $\mathrm{D}, 6$; wherefore draw m, G, and $m, \mathrm{~B}$, which will cut the tranfverfe lines on the oppofite fides in this laft proportion.

This is the preparatory work for the figure K , which is projected upon it, as on a fkeleton, all the lines correfponding, as appears on infpection; and all the reft of the operation is the fame as at figure I. Fig. L. This method is an univerfal one ; (i.e.) the folid in any fituation may be projected by it, and is perhaps the fhorteft of all.-For let any face be given, 2, 3, 4, and through any angle of that face, find the axis of the folid; divide that axis, perfpectively, in the two points, ferving for centers of the two pentagons; complete thore pentagons in the manner before taught, which, with the two poles of the axis, are all the points; and thefe being joined, the whole figure is formed.

It will be proper to draw (fomewhere apart) the geometrical proportion of the axis, with its divifions, and the angles made by the planes ; (e. g.) draw q, g, for the axis; divide it in y, and z, the centers of the two pentagons; and through z, draw, at right angles, k, z; make z, k, equal to the fhorter fide of the diameter of a
pentagon; draw k, g; then z, k, g, will be the angle made by the interfection of the plane of the lower pentagon, with a face of the folid, terminating at the lower pole g, and confequently z, g, k, will be the angle made by the axis with that face, g, k.

Having given the face $2,3,4$, with its vanifhing line, diftance, and points, find the vanifhing line b, p, of planes perpendicular to c, the vanifhing point of 4,2 , (one fide of that face); and at x, the diftance of this vanifhing line b, p, draw x, p, making the angle a, x, p, equal to z, k, g; draw c, p, which will be the vanifhing line of the planes of the lower and upper pentagon $(2,4,5,1,10$, being the lower) of which one fide is 4,2 ; and by means of that fide, with the vanifhing line c, p, that pentagon is finifhed. Now find b, the vanifhing point of lines perpendicular to the vanifhing line c, p, and draw $3, b$, which will be the indefinite axis of the jeofaedron; bifect the angle e, d, f, to p^{*}; draw p, I, cutting 4,2 , in l, and l, r, will be the diameter of this pentagon, whofe center is determined by the interfection of its diameter with the axis, and from that center to 3 , will be the perfpective reprefentation of z, g; wherefore from 3 , draw a line in any convenient direction, fo as not to interfere with the figure, as 3,0 , and parallel to it, b, d, equal to b, D^{2}, the diftance of b; then draw from d, through the center, cutting 3,0 , in k; this interfection will mark the place of the center of this lower pentagon, geometrically on 3,0 , by which meafure the reft of the geometrical axis is divided, as appears above, at q, g, by means of parallels from y, z, and g. Now draw from the divifions of 3,0 , to d, cutting the axis in the upper center and pole; from p, draw through the upper center, and make that part of the upper diameter, from the center to II, equal to the lower, from

[^5]the center to I , by drawing from I , through the upper center to b, p, (the vanifhing line of the plane paffing through the axis,) cutting it in i; then drawing from i, to the lower center, cutting the upper diameter in I_{1}, which will be the angle of the upper pentagon over the middle of the fide 4,2 , of the lower pentagon; and, in the fame manner, find the other part of the upper diameter; that is, from the upper center, through l, the middle of 4,2 , draw to the fame vanifhing line b, p, and from the point of interfection *, draw through the lower center, cutting the upper diameter in r, which will be the middle of 7,9 , the line of the upper pentagon, over the point I , of the lower pentagon; draw from the vanifhing point c, through r, which will produce the line 9,7 , indefinitely; draw from e, through iI, cutting that line in 9 , and from f, through the fame point I_{1}, cutting it in. 7 , which determines the length of 7,9 ; draw g, 11 , and $e, 7$, which finds 6 ; then $f, 9$, and $c, 6$, cutting it in 12 ; draw 11,12 , which finifhes this upper pentagon. Now draw from 6, 7, 9, 11 , and 12 , to 8 , the upper pole; then join the correfponding points of the two pentagons, which completes the icofaedron.

[^6]
The FOURTH PART.

Fig. 52. T N this part it is propofed to exhibit feveral expedients to faNo.r. 1 cilitate the practice; and firft to divide a perfpective line in any proportion.

Let it be required to divide A, B, whofe vanihhing point is V, into four equal parts. Draw V, d, in any direction, and of any length, and A, f, parallel to it; draw d, B, cutting A, f, in f; divide A, f, into four equal parts, at c, d, and e; draw $\mathrm{d}, c,-\mathrm{d}, d$, and d, e, which will cut A, B, in C, D, and E , the points required.

If room be wanting, any nearer diftance will anfwer the fame purpofe, as D : in this cafe, draw $D, \mathrm{~B}$, cutting A, f, in 4; and divide $A, 4$, in the fame number of equal parts, at 1,2 , and 3 ; and draw $D, 1,-D, 2$, and $D, 3$, which will find the fame points.

Again, at No. 2, V, D, is drawn in another direction; for it may be in any, at pleafure, provided A, f, be drawn parallel to it; and here it is required to divide A, B, into two equal parts only; therefore bifect A, f, in e, and draw D, e, cutting A, B, in E , the point fought. Or, if it be more convenient, draw V, d, and A, f, parallel to it; bifect A, f, in ϑ, and draw d, ϑ, which will cut A, B, in the fame point E; for the truth of the operation depends on the parallelifm of the two lines, V, d, and A, f. And in all thefe cafes, the lines from D, or d, to the feveral divifions of A, f, or A, f, reprefent parallels, therefore the lines A, B, muft be divided as the originals.

If $V, d, N o .1$, be the true diftance of the vanifhing point V, and A, the interfection of the picture, by the original line; then A, c, d, e, f, are the true originals, or geometrical proportions; and therefore when it is required to find the original proportions of a perfpective line, already divided, the true diftance and interfection muft

Plate XIITII

be taken.-But in order to find the perfpective divifions on a line already projected, the above operations are equally true, whatever diftance be taken; and although A, be not the interfection; for A, B, any part of a perfpective line, will be truly divided by this method.

At No. 3. it is required to make a fegment on the perfpective line A, V, from the point C, towards V, equal to A, B, on the fame line. Draw D, C, till it cuts A ; e, in c; make c, e, equal to A, b, and draw e, D, cutting A, V, in E ; then will C, E, be, perfpectively, equal to A, B.

Or, if it be required to make the perfpective of a part equal to b, A, (on the original line;) at the diftance of c, from b, divide the original line A, e, in the manner required, and draw c, D, and e, D, which will determine the part C, E; and fo of any other proportions.
Fig. 53. No. i. Here is an original plan, in its geometrical proportion, placed obliquely below the ground line; it is required to project it in perfpective. Continue the feveral divifions to that line, and having found the two vanifhing points a, and b, draw from thofe points to the feveral interfections, which will form the perfpective reprefentation; but as it often happens, that on one fide there may not be room for many interfections, becaufe they run much wider than on the other fide, after having drawn one only, as to c, and drawn from thence to b, which finds the point I, take any other point between b, and S, as B, and draw from thence through I, cutting the ground line in C, and make ufe of the diftance $0, C$, (inftead of o, c,) fetting that off, from C , to f, and from f, to g, $\& \mathrm{cc}$. as often as neceffary; and drawing from f, to B , and from g, to B , \&c. the fame points $2,3,4, \& c$. will be found, as if there had been fpace to repeat the diftance c, o, as many times; then draw I, $b,-2, b,-3, b$,-icc. which will complete the work.
Fig. 53. No. 2. The fame thing is done without a geometrical plan: and here the meafures of the original fquares are fet off equally on each fide of 0 , as $\mathrm{I}, 2,3,4$, and the diftances b, D, and a, D, brought
brought down to the vanifhing line at 9 , and d; and, after having drawn the two extreme lines $a, 0$, and $b, 0$, then drawing, refpectively, $9,1,-9,2,-9,3,-9,4$, and $d, 1,-d, 2,-d, 3,-d, 4$, the points of the extreme lines $b, 0$, and a, a, are found ; from which points, on one fide, drawing to a, and, on the other, to b, the plan is completed. And if room were wanting for S, D, above, the points b, a, and $9, d$, might be found by means of d , below, making S , d, equal to the diftance S, D.
Fig. 54. If it be required to find a fegment of F, b; from F , towards b, equal to A, B, of the line A, a, bring down a, D, the diftance of the vanifhing point a, to d ; draw d, B, cutting the ground line in e; bring down alfo b, D, the diftance of the vanifhing point b, to d; draw d, , cutting the ground line in f; make f, g, equal to A, ℓ, and draw d, g, cutting F, b, in E ; then will E, F, reprefent an original line, equal to the original of A, B, and therefore will be equal, perfpectively, to A, B, which is all that is neceffary to find the length F, E, perfpectively, equal to A, B. But as it is indifferent whether the ground line A, g, be ufed for this purpofe, or any other parallel, and as fome other is often more convenient, take any line parallel to the vanifhing line, as $B, 6$, and draw d , A , cutting it in 4 , and d, F, cutting it in 6; then make 6,5 , equal to $4, \mathrm{~B}$, and draw $d, 5$, which will cut F, b, in E . Or take any other parallel, as I, F; make $\mathrm{F}, 3$, equal to $\mathrm{I}, 2$, and draw $d, 3$, which finds the fame point E : for $\mathrm{d}, \mathrm{A}, e$, and d, f, g, are equal triangles, being between the fame parallels, and having equal bafes; [Euclid, Book 3. Prop. 38] and B, 6, or I, F, being parallel to the fame vanifhing line a, d, will cut off equal triangles from e, d, A and g, d, f; therefore, \&c.
Fig. 55. Another way of dividing perfeective lines, is by marking the geometrical proportions on the rays, from D , as on D, a, 一 D, b, the rays of the vanifhing points a, and b, of A, B, and A, G, F. Make D, 1 , and $D, 2$, equal, and draw $D, 6$, parallel to 1 , 2 ; then a line from 6 , cutting A, b, and A, a, in any parts, will divide thofe two lines equally, as $6, G, B$, makes A, G, and A, B, perfpectively, equal.

If any other proportion be required, mark it on the ray of the line ; for inflance, $D, 3$; is equal to D, I, and $\frac{x}{2}$. Draw $D, 5$, parallel to 1,3 ; and draw $5, B$, cutting A, b, in F; then A, F, is in the fame proportion to A, B, as $\mathrm{D}, 3$, is to D, 1 .
A, c, is another perfpective line; D, c, its ray; and c, its vanifhing point; and $\mathrm{I}, 4$, divides D, a, and D, τ, unequally; and $D, 6$, being parallel to $I, 4$, the line $6, E, B$, divides' A, c, and A, a, in E , and B , perfpectively, in the fame proportion; A, E, being to A, B, perfpectively, as D, 4, to D, 1 , geometrically.
Fig. 55. No. 2. This method may alfo be ufed in cafes like that of 54. Let E, F, be a perfpective line, whofe vanifhing point is a, it is required to make A, B, (of another line) equal to E, F. Draw from A , to a, the vanifhing point of E, F; and draw A, E, cutting the vanifhing line in e; draw $e, \mathrm{~F}$, cutting A, a, in C ; then $\mathrm{A}, \mathrm{E}, \mathrm{F}, \mathrm{C}$, will reprefent a parallelogram, whofe oppofite fides being parallel and equal, A, C, muft be equal to E, F. Now make D, I, and $\mathrm{D}, 2$, equal; and draw D, f, parallel to $\mathrm{I}, 2$; draw f, C, cutting A, b, in B ; then will A, B, be equal to A, C, (as by the laft Figure;) but A, C, is equal to E, F; therefore A, B, is alfo equal to E, F; which was to be done.
Fig. 55 . No. 3. B, A, is given, it is required on E, A, to make A, C, equal to B, A. Draw 4, 1 , making $D, 4$ and D, I, equal; draw $\mathrm{D}, 5$, parallel to 4 , I ; then draw $5, \mathrm{~B}$, cutting E, A, in C , and C, A, will be equal to B, A; which was to be done.

But if 5 , goes beyond the picture, divide $D, 4$, in half, at 2 ; and draw $\mathrm{D}, 3$, parallel to 2 , I ; then (having divided A, B, perfpectively, in half at 6,) draw 3,6 , which will cut E, A, in the fame point C .
N.B. The manner of dividing a perfpective line in half, is defcribed at Fig. 52, No. 2.
Fig. 55. No. 4. Let the fame things be given as before; but the diftance D, being beyond the picture, take a fourth (or any) part of I.

The PRACTICE

the diftance at D; then take a fourth of S, V, at E, and draw D, E, which will be parallel to V, D, which tends to the true difance; therefore the angle at D, will be the fame as at D.-Draw c, d, making D, c, and D, d, in any proportion required, and D, e, parallel to c, d; fet off S, e, four times to F, and draw F, B, cutting S, A, in C: then will A, C, be to A, B, as D, d, is to D, c, (i.e.) in the proportion required.
N. B. Any line drawn from F , will cut the fame lines in the fame proportions, as F, f, b; for A, b, is to A, f, as A, B, is to A, C; (i. e.) as D, c, is to D, d.
Fig. 56. As this is the place allotted for expedients, the reader is referred back to Fig. 45, where the manner of finding, on the horizontal plane, the plans, or ichnographies, of cubes projected on oblique planes, is defcribed. The letters, conftantly ufed, fhew the fituation in general ; but here is a difficulty peculiar to this pofition, which is, that the fide a, b, is exactly in front, and, for that reafon, it is impoffible to find the feat, or ichnography of the point a, without fome expedient; therefore draw a, a, and b, b, both parallel to the horizontal line; draw at pieafure from S , (which is the vanifhing point P , brought up to the horizontal line), cutting b, b, in b; draw P, b, cutting a, a, in a; draw a, C, perpendicular to the horizontal line, cutting S, b, in C; draw C, A, parallel to b, b; then A, will be the point fought, viz. the feat of a, on the horizontal plane, by which the feat, or plan of the upper fquare is found on that plane.
Fig. 57. No. I. At Fig. 3f, are feveral lines tending to a point beyond the limits of the picture, and there, as well as elfewhere, the reader is referred to this place for expedients in fuch cafes; which frequently happen, efpecially when the diffance of the picture is confiderable. The prefent figure fhews the manner of drawing lines to an inacceffible point. Suppofe A, B, and C, D, two lines, tending to fuch point, beyond the picture; it is required to draw from g, a line, tending to the fame point. Draw N, O, through g, in any direction, and B, D, parallel to it, at any convenient diftance, within the picture; at D, with the compaffes, fet off the length of N, O as D, E;

of P ERSPECTIVE.

fo that E , interfects the line A, B; divide $\mathrm{D}, \mathrm{E}, \mathrm{in} \mathrm{F}$, making D, F, equal to O, g; draw F, f, parallel to A, B, cutting B, D, in f; then draw g, f, which will tend to the fame point with A, B, and C, D; for B, D, is divided in f, in the fame proportion as D, E, is divided in F, (i.e.) as N, O, in g, (Prop. 2. Book 6. Eucl.) Let there be another point, from which it is alfo required to draw to the fame inacceffible point, whether between the lines A, B, and C, D, or without, as here at b; which, if it be fo fituated, as that a line N, O, may conveniently be drawn to it through g; then draw $\mathrm{N}, g, \mathrm{O}, h$, and take the diftance O, b, and add it to the line E, D, from D , to I ; and draw I , i, parallel to $f, \mathrm{~F}$, cutting B, D, in i, and drawing b, i, it will tend to the fame point; for the triangle $\mathrm{D}, \mathrm{I}, i$, is fimilar to $\mathrm{D}, \mathrm{F}, f$; and therefore D, i, is to D, I, as D, f, to D, F; and, confequently, D, i, to O, h, as D, f, to O, g.

Let it alfo be required to draw from k, to the fame point. Draw $\mathrm{I}, 2$, through k, parallel to B, D; fet off $\mathrm{I}, 2$, from f, to 3 ; divide $f, 3$, in 4 , as $\mathrm{I}, 2$, in k; draw 4 , 5 , parallel to A, B; and then drawing $k, 5$, it will tend to the fame point.-Here g, f, is ufed inftead of C, D, as more convenient; for any two lines tending to the fame point, will anfwer the purpofe.
Fig. 57. No. 2. Another method is propofed: let A, B, and C, D, be two lines tending to a point, beyond the picture; now, in order to draw from e, to the fame point, draw any line through e, cutting thefe two lines in A, and C; and at any convenient diftance B, D, parallel to A, C, draw A, D, and (parallel to D, C, draw B, b, cutting A, D, in b; then draw b, d, parallel to B, D, and confequently equal to it; draw e, D, cutting b, d, in F , which divides b, d, in the fame proportion as A, C, is divided by e; wherefore fet off $d, \mathrm{~F}$, to D, f, or (which is the fame thing) draw F, f, parallel to d, D, and drawing e, f, it will tend to the point required.

By the fame procefs, m, p, is found, tending to the fame point, wiz. draw m, n, parallel to A, C; draw n, D, cutting B, b, in s;
draw \bar{s}, t, parallel to B, D; draw m, D, cutting it in t; then fet off s, t, from B, to p; and drawing m, p, it will tend to the fame point. - The only requifite is to find the fame proportions on the line B, D, as on A, C, or on B, p, as on n, m.
Fig. 57. No. 3. Now, on thefe principles, fuppofe S, f, the horizontal line, (or the vanihing line of any other plane,) S, D, the diftance, D, b, a parallel to an original line, tending to a vanifhing point beyond the picture; it is required to draw from a, to the fame vanifhing point.-Draw a, d, and b, e, both parallel to S, D; continue b, D, till it cuts a, d, in d; draw $b, \%$, parallel to S, f; draw d, g, cutting S, f, in i; draw a, i, cutting D, S, (continued) in b; fet off g, b, from b, to e, (or S, b, from f, to e,) or draw b, e, parallel to S, f; then drawing a, e, it will tend to the vanifhing point required.-It is evident, that b, f, might have been fet off from S, to g, inftead of drawing the parallel b, g. or that a parallel to S, f, from b, would have determined e, as well as fetting off S, b, at $f, e, \&<c$.
Fig. 57. No. 4. Let a, b, and C, d, be two lines, tending to a vanifhing point; if there are any number to be drawn to the fame point in the fame line, as 1,2 , and 3 , draw a, c, parallel to a, C, at any convenient diftance; then draw from $C, 1,2$, and 3 , parallels to a, a, cutting a, c; then from c, and the other interfections of a, c, draw to O, any point in a, b, and through 7, the interfection of $c, 0$, with C, d, draw 7,8 , another parallel to a, c; then from 1,2 , and 3 , draw through the refpective interfections of the line 7,8 , viz. $1,4,-2,5$, and 3,6 , which will be the lines required, all tending to the fame vanißhing point.
Fig. 58. No. 1. Suppofe A, B, a perfective line, to be divided in any proportion, but its vanifhing point to be beyond the picture; continue D, S, to A, B, cutting it in e; draw at pleafure e, i; fet off B, g, from e, to b; draw S, b, and D, i, parallei to it; fet off b, i, from g, to l, upwards; draw D, l, and A, M, parallel to it. (By this means, e, i, will be divided proportionally to D, e, (i.e.) e, b, to e, S, as b, i, to S, D; and g, l will be to g, B,

as S, D, to S, e, which is the proportion wanted.) Now A, M, will be the original of A, B; therefore, on it, make the geometrical divifions required; draw from thefe divifions to D, which will cut A, B, perfpectively.
N. B. If D, l, had been already drawn (as well as A, B,) then only draw A, M, parallel to it, and proceed as above. Fig. 58. No. 2. After e, i, is divided, if room be deficient below for A, M, draw n, p, (from p, the extremity of the picture) parallel to D, l, and bring down n, to q; (i.e.) make p, q, equal to p, n; then draw from D , parallel to n, q, which finds r, the diftance of the vanifhing point of A, B; then make the geometrical divifion on A, c, as a, b, c, from which points draw to r, and the lines a, r, b, r, and c, r, will cut A, B, in the fame points.
Fig. 59. No. I. Let E, F, be given, and the direction of E, G, drawn at pleafure, in order to form either a cube, or any other cubical figure, of known meafures, (the horizontal line, with its diftance, being always fuppofed to be given, or known). Continue the fide E, G, till it meets the horizontal line in a, which will be its vaniflhing point ; draw a, D, and D, b, perpendicular to it, cutting the horizontal line in b; draw E, b; then E, g, parallel to D, a, and E, b, parallel to D, b; and make thefe two lines of the geometrical lengths required (as here they are both equal to E, F) : draw g, D, cutting E, a, in G , and b, D, cutting E, b, in H ; by which operation thofe lengths are determined: draw G, b, and H, a, which finifh the lower fquare or plan: raife perpendiculars at G, and H , and the remaining angle; and draw $\mathrm{F}, a,-\mathrm{F}, b$, cutting the perpendiculars at G, and H , in I , and K : laftly, draw I, b, and K , a, which completes the cube.
Fig. 59. No. 2. If room be wanting, below, for the lines E, g, and E, b, they may be drawn parallel to the horizontal line, as in this fcheme; but then the diffance b, D, mult be brought down to d , and drawing d, g, will find the fame point G , in the line E, b, as by the above operation; and the diftance a, D, muft alfo be brought down to d, from whence, drawing to b, the point H , will be found. The reft is as No 1 .

Fig.

Fig. 59. No. 3. Is an expedient, in cafe the point a, is beyond the picture. Continue the line G, E, whofe direction is given as before, indefinitely towards D; and fet off the diftance of the picture S, D, from S, to D, the point where that diftance cuts G, E, continued. From O, in the horizontal line, at the extremity of the picture, draw a parallel to G, E, D, cutting S, D, in d; tranfpofe S , d , to d, on the line S, D; draw d, O, and D, a, parallel to it, which will tend to the true vanifhing point a, beyond the picture. Now proceed, as at No. 1, or No. 2; and having drawn E, b, and found the points G, and H, and drawn G, b, bifect the angle a, D, b, to c; draw c, E, cutting G, b, in L ; draw L, H; then raife the feveral perpendiculars at G, L, and H; draw F, b, cutting H, K, in K, and c, F, cutting L, M, in M; draw b, M, cutting G, I, in I; join F, I, and M, K, which completes the whole. If a parallel to S, D, be drawn from O, cutting the line D, E, G, in a, then O, a, will be equal to O, a, (fo that if a, O, and a, O, were both raifed up perpendicular to the picture, and alfo D, S, and $D, \mathrm{~S}$, on S ; then a, would coincide with a, and D, with $D:$) by which means the lines O, d, and O, d, may both be fpared.

The fame figure is repeated feveral times, on purpofe to fhew by what various means the fame effect may be produced; but if the lines of the three operations were crowded together in cne fcheme, they could fcarce be feparated by the eye or underftanding, fo as to difcover what was peculiarly, and diftinctly effential to each.

If they appear to be fomewhat intricate, it muft be confidered, that they are to be ufed on extraordinary occafions only, and may be always avoided, if the artift chufes rather to take fufficient room on another fcale, than confine himfelf to the face which happens to be left in his picture.
Fig. 60. Let A, C, be a perfpective line; it is required to find the geometrical length of a part, as A, B. If its diftance C, D, be within the picture, and room to fet it off on the vanifining line, tranfpofe that diftance from C, D, to E; draw E, B, cutting the ground

ground line in F ; then A, F, is the geometrical length fought.-But if D be out of the picture, take any portion of S, D, as here S, d, a fourth, and S, c, a fourth of S, C; draw c, d, which will be a fourth of C, D; tranfipofe c, d, from C , to e, and draw $e, \mathrm{~B}$, cutting A, F, in f; then A, f, will be a fourth of A, F, the geometrical length fought.-It is evident, that the fame expedient will ferve to find any proportion of A, C; for fuppofe it had been required to cut off the geometrical length A, F, thereon, this is only, reverfing the operation, (i.e.) drawing E, F, cutting A, C, in B; or, if room be wanting, drawing e, f, which finds the fame point B . Fig. 6 r. No. r. In order to find the vanifhing line of a plane making a given angle with another vanifhing line, it has been taught to find, firft, the vanifhing line of planes at right angles with both, on which to meafure the angle of inclination. Now fuppofe $\mathrm{Q}, \mathrm{S}, \mathrm{B}$, the vanifhing line given; it is required to find the vanifhing line of planes, making a certain angle therewith, and paffing through B, their common interfection. To this end, find Q, the vanifhing point of lines perpendicular to B; draw Q, P, perpendicular to Q, B, which will be the vanifhing line, perpendicular to both planes; fet off its diftance to d; draw d, P, making $\mathrm{Q}, d, \mathrm{P}$, the angle of inclination; and, laftly, draw B, P, which will be the vanifhing line fought. But if room be wanting, above, for the diftance S, D, divide S, B, in half, at b, and take S, D, half of S, D, and find q, the vanifhing point of perpendiculars to b; draw q, p, perpendicular to q, B; fet off the diftance of q, to r; and draw r, p, making q, r, p, the angle of inclination: draw b, p, which would be the vanifhing line fought, if half the diftance was the true diftance. Now, therefore, from B, draw a parallel to b, p, which parallel will be the vanifhing line fouglt.
Fig. 6I. No. 2. Let it be required to draw a line through B, S, at the point A, in any angle, perfpectively, as (e. g.) 45 degrees; this is done by making the fame angle at D , drawing D, d, and then $d, \mathrm{~A}$, which is the line fought. But if room be wanting, take S, d, the half of the true diftance (or any lefs proportion, as may be neceffiary;) make
make the fame angle at d; draw d, D; then divide S, A, in half, at a; draw D, a; and, laftly, draw through A, a, parallel to D, a, which will be the line required.
Fig. 6z. When the parallel D, C, of any line b, a, runs out of the picture, before it reaches the vanifhing line, any other line, within the picture, will anfwer the purpofe, as D, c, by drawing from a, b, and f, parallels to it, cutting the ground line in e, g, and b, from which, feverally, drawing to c, the perfpective points of a, b, and f, are found in the pofition required.
Fig. 63. No. 1. The center and diftance of the picture being given, let B, A, be an original line, in any direction (e.g.) inclined to the picture in the angle $\mathrm{B}, \mathrm{A}, B$; and, cutting it in $\mathrm{A},(\mathrm{A}, B$, being its feat, or orthographic projection on the picture) it is required to find the perfpective length of A, B. Draw S, V, parallel to that feat, and S, D, perpendicular to it, and equal to the diftance; draw D, V, parallel to the original A, B; draw A, V; then V, is the vanifhing point, and A, V, the indefinite perfpective reprefentation. And the length of A, B, is determined, by drawing B, D, cutting A, V, in b. Or fetting off the diftance V, D, to d, and A, B, to B, and drawing B, d, finds the fame point b.

This is the moft general fcheme for the purpofe, becaufe the angle of incidence is, at once, referred to the picture, without regard to any other plane, and fo the original line may have any inclination, without making the leaft difference in the operation, on account of the pofition of the picture.

But another example or two, with additional circumftances, may farther illuftrate this kind of operation.
Fig. 63. No. 2, A, B, is an original line; A, a, its feat on the picture; A, b, the perfpective of A, B, found as in the former ; B, a, (parallel to S, D,) its feat on the ground ; a, b, the perfpective of that feat, found by drawing a, S; for if D, S, be turned forward on the point S, and B, a, turned backward on the point a, till both are perpendicular to the picture, it is evident that b, will be the perfpective of B and, confequently, a, b, of a, B.

Fig. 63. No. 3. A, B, is an original line; A, its interfection with the picture ; A, a, its feat on the picture; V, its vanifhing point, found as at No. 1 ; and A, b, its perfpective, which is all that is neceflary: but befides, let it be required to find its feat on the ground, in the direction of the original line; (i. e.) fuppofing a plane paffing through it, and its feat on the picture. Draw B, a, parallel to S, D, which will be that feat; for, turning the triangle $\mathrm{S}, \mathrm{D}, \mathrm{V}$, forwards on S, V, and the triangle $\mathrm{A}, \mathrm{B}, a$, backward on A, a, till both are perpendicular to the picture, the plane $\mathrm{A}, \mathrm{B}, a$, will cut the picture in the line A, a, and the ground, in the line B, a.

And to explain it ftill farther, a, B, is turned round on a, to a, B, fuppofed perpendicular to the picture, and lying on the horizon; $A, a, d r a w n ~ o n ~ t h e ~ p i c t u r e ~ p e r p e n d i c u l a r ~ t o ~ t h e ~ h o r i z o n ; ~ ; ~$ and to thefe is alfo joined the line B, a, which is the true gec.metrical feat of the original A, B, (perpendicularly) on the ground; as B, a, is its feat in the direction of the original line, a, and a, being their interfections with the picture. The perfective of $a, \mathrm{~B}$, is a, b_{v} for S, mult be its vanifhing point by conftruction, D, S, being parallel to B, a. And the perfpective of a, B, is a, b, drawn to v, its vanifhing point, which is found by drawing a perpendicular from V , to the horizontal line: for the geometrical line a, B, being on the ground, perpendicularly under the original line A, B, its vanifling point muft neceffarily be on the horizontal line, perpendicular to V, the vanifhing point of A, B; wherefore a, b, drawn towards v, is the perfpective of a, B. To make this (if poffible) more clear, S, d_{0} is drawn perpendicular to the horizon, and equal to S, D, (the diftance); and d, v, drawn parallel to a, B, which finds the fame vanifhing point v.

There circumftances are thus minutely explained on this, and other occafions, that the univerfality of the principles may appear in their application to the various cafes that occur, or may be required.
Fig. 64. Let A, B, be given as the fide of a fquare to be projected, fpace being deficient every way ; draw A, S, and B, S; and from any convenient portion of A, S, or B, S, (as here a $4^{\text {th }}$,) draw
b. f, paraliel to A, B; then take the fame portion of the diffance, (i.e.) a 4 th, as S, D; draw f, D, and D, g, at right angles to it ; draw g, b, and fo finifh the fmall fquare, a, b, e, c, by the ufual method:-then the large fquare is completed, by drawing parallels to the fides of the former, as B, E, parallel to $b, e ; \mathrm{A}, \mathrm{C}$, parallel to $a, c ; B, C$, parallel to o, c, b, for the diagonal; and taftly, C, E, parallel to c, e.

Or, inftead of B, C, parallel to $b, c,-\mathrm{S}, c$, continued, will find the point C ; or S, e, continued, will find the point E ; either of which is fufficient for the purpofe.

This may not be an improper place to decide a queftion much debated, viz. Whether the reprefentation of a long wall, on a picture parallel to it, fhould be made of the fame height, at the utmoft extent, as directly oppofite to the eye, fince it appears of lefs height the farther it is extended? To which queftion, the anfwer is, that the wall fhould be drawn of equal height, how far foever extended; becaufe the reprefentation will appear as much lefs, in proportion, at the extent, as the original appears.
Fig. 65. Let $A, B,-C, E$, be the original wall; D, the eye of the fpectator ; and, confequently, $A, D,-B, D,-C, D$, and E, D, vifual rays; and a, b, c, e, the reprefentation on a parallel plane; the triangles $\mathrm{A}, \mathrm{D}, \mathrm{B}$, and a, D, b, are fimilar, as are the triangles $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and c, D, e; and the lines $\mathrm{A}, \mathrm{C},-\mathrm{B}, \mathrm{E}$, and $a, c,-b, c$, are all parallel, as are alfo a, b, and A, B, and c, e_{x} to C, E : therefore c, e, muft be equal to a, b, wobich was to be proved; and in like manner, and for the fame reafons, $2, b$, and \& 4, are equal, being the reprefentations of the equal lines I, B, and E, 3, made equal to A, B, and C, E. See Euclid, Book I. Prop. 37, 38, 39, \&c.

Of the fame nature is that other queftion, Whether, in reprefenting a row of columns, ftanding on a line parallel to the picture, thofe, which are more diftant from the center of fuch picture, fhould be made equal to, or lefs, or bigger than the nearer? It is allowed they appear lefs; but the anfwer to this queftion is, that they ought (in this fituation of the

STing. $8 . V^{T}{ }_{2}$

picture) to be made bigger; and, though fo painted, will really appear as much lefs, in the painting, as they appear in nature.
Fig. 66. Let A, B, and C, be the plans of three columns, either fquare or round; and firft fuppofe them fquare ; it is evident, that the reprefentation of them will take up the face marked by the vifual rays, from the extreme angles to D , the fpectator's eye, on the parallel picture, whofe fection is S, k; (i.e.) the reprefentation of A , will fill the fpace S, f; that of B , will fill the fpace g, b; and that of C , the fpace i, k.

If the columns are round, the feveral fpaces, which are filled by their reprefentations, will be determined by the pricked rays, cutting the line S, k, which fpaces are marked by fmall arches.

But if the picture be placed on the line $S, 2$, the reprefentations of the round columns will be equal to each other, or nearly fo. And if on the line $S, 3$, or any other between 2 , and $D_{\text {, (the end }} S$, remaining unmoved) the reprefentations of the more diftant columns will then, indeed, be in lefs fpaces of the picture, by certain proportions, according to their feveral diftances-But on all thefe pictures, they will be truly reprefented, and will equally exhibit the images of the originals to the eye of the fpectator at D, who will neceffarily form the fame ideas of the proportions, and diftances of the objects, from any one of thefe pictures, as from any other of them; which may all be confidered as tranfparent planes, or as one fuch plane, moveable on a hinge at S, from k, to 2 , or 3 ; which plane no more hinders the fpectator from difcerning the original objects, than the common medium of air ; and as all the vifual rays are neceffarily right lines, the picture, or medium, makes no alteration in their directions, which are continued, without interruption, from the feveral parts of the originals, to D, through any one of thefe tranfparent planes, and whichfoever be chofen, the reprefentations can be determined by nothing but the interfections of thofe vifual rays with fuch plane, and cannot poffibly be falfe, if thefe interfections are truly found.
N. B. The rays for the round columns are determined, by making tangents to the feveral circles from D ; and the

The PRACTICE

points, in which they touch, are found, by bifecting the line from D, to the center of each circle, as $D, 5$, for the circle: C ; and with the length $4-5$, as radius, making an arc through the center, cutting the circumference in the pointsfought.
If the circles were nearer each other, and D at a greater diftance, . the difference would be proportionally lefs, and at a fufficient diftance, not at all offenfive; as indeed nothing, that is truly reprefented, can: be; but even at this, or any diftance, the rule (being demonftrably. juft) cannot vary, and therefore muft be univerfal.
Fig. 67. No. 1. The ufual points and lines being given, it is required to reprefent a door open at any angle. Let l, c, be the fide given. on which it is fuppofed to turn; S, b, the fide of the room on the floor; make $\mathrm{S}, \mathrm{D}, a$, equal to the angle required; draw a, c_{r} cutting the ground line in i; then $i_{\text {, }} c, b$, will reprefent the fame angle : and, for the breadth of the door, draw i, g, parallel to D, a, and D, c, cutting it in g; from g, to k, fet off the geometrical breadth, and draw D, k, cutting c, i, in a; then will c, e, be the perfipective breadth fought, equal to g, k. - Now, for the thicknefs, draw D, b, perpendicular to $a, \mathrm{D} ;$ and draw b, e, to b, which will be the direction of the edge ; draw b, k, f, which will be parallel to D, b; and make k, f, of the thicknefs required; draw f, D, which will determine the thicknefs, perfpectively; or, inftead of drawing k, k, and D, f, continue g, k, to i, on the ground line, and a parallel from f, to the fame; and; from thofe interfections, draw to a, which will give the thicknefs of the door ; draw e, m_{2}, parallel to c, l, and a, l, cutting it in m; and draw b, m, which finifhes the door. Or, as
Fig. 67. No. 2. Inftead of drawing i, g, and b, k, below the ground line (in order to determine the breadth and thicknefs of the door), bring down the diftance a, D, to d , and draw d, c, cutting the ground line in g; and make g, k, equal (geometrically) to the breadth; draw d, k, cutting a, c, in c, which finds the perfpective breadth : then, for the thicknefs of the edge, bring down, in like manner,

manner, b, D, to d, and draw d, e, cutting the ground line in 0 ; make o, f, equal to the thicknefs, and draw f, d; all the reft is as the former:
N.B. If the door be thut, the point e, (at No. r.) will touch E ; and m , will touch M. Or again,
Fig. 67. No. 3. For the breadth, draw the pricked line $c, 4$, parallel to the horizontal line, and equal to one third of c, l, the heighth (which is here the geometrical breadth,) and D, I, parallel to it, of any length; draw $\mathrm{I}, 2$, cutting D, I, and D, a, equally, in I , and 2, and $\mathrm{D}, 3$, parallel to $\mathrm{I}, 2$; and draw 3, 4, which will cutc a, c, in e; then e, c, will be the perfpective breadth. This method has been before explained at Fig. 55; No. I, and 2, and is, in many cafes, very expedient. The thicknefs is found as in the two former; and the perfective direction is determined by the lines b, e, and b, m. N. B. The point e, which determines the breadth of the door, may be any where in the pricked femicircle, if the angle of the aperture be not particularly required.
Fig. ó8. Having a fquare e, b, g, f, given, to make, on it; an octagon, draw a, b, through the center; perfpectively parallel to the fides e, g, and b, f; (i.e.) from their vanifhing point; and c, d, alfo, through the center, at right angles to a, b, perfpectively ; then draw D, \mathbb{E}, making an angle of $67^{\frac{2}{2}}$ degrees with S, D, (which is the geometrical angle that e, a; makes with a, b,); and, then, from压, draw to e, cutting a, b, in a, which is one of the angles; and from the fame point \not e, through b, cuiting $d ; c$, in c, another angle; and again to g, cutting c, d, in d; and alfo through f; cutting a, b, in b, which determines the laft angle; $e, a,-c, b,-$ g, d, -and b, f, being ail parallel ; and, laftly, join $c, e,-c, g$, $f, b,-f, d,-d, b$, and b, a, which completes the octagon.

This is done in lefs time than defcribed, for all the four points: wanting, are found without once moving the end of the ruler from $た$.

If the picture will not admit the length S, E; then, inftead of the angle S, D, E, of $67 \frac{1}{2}$, make S, D, B, an angle of $22 \frac{1}{2}$, which:
which (being the complement of $67 \frac{1}{2}$ to 90) is the geo metrical angle that c, a, makes with e, b; and from B, draw through e, which will cut c, d, in c; and from the fame point B, to f, cutting c, d, in d; and through b, cutting a, b, in b; and, laftly, through a, to g, cutting a, b, in a; by which means all the fame points are found, and the octagon completed, by joining the reft.

The other octagon (of pricked lines) is formed by the fame vanimhing points.
Wig. 69. No. 1. In order to reprefent a cornice, firft draw the geometrical elevation only, as here for the Doric, in pricked lines; then draw lines from S, through every angle of the projection, as $1,2,3$, \&xc. and draw from D, through A, meeting the line S, 1 , in a.; and fo on, from D, through every interfection of the line A, B, as $D, 4$, meeting the line $S, 2$, in 0 , and $D, 5$, meeting the line S, 3 , in $p, \& x c$. by which operation the whole cornice is completed without any geometrical plan.

The reafon of this proceeding will appear on infpection of the fquare $6, a, 1, A$, which is the fquare of the whole projection, and of which A, a, is the diagonal, iffuing from the corner, or angle of :the wall.

And when it is neceffary to determine an outer angle at the extremity, make there a fquare correfponding to the above, as 11,7 , 8,9 , which is eafily done, by means of the lines already found; and to determine the mouldings of this angle, perpendiculars muft be raifed from thofe of the firft, already completed, to the diagonal A, a; and from the feveral interfections, lines drawn to S, will cut the diagonal II, 8, of this fquare; from which interfections, dropping perpendiculars, thefe, meeting the feveral members, will determine the mouldings of this laft angle. For inftance, from the point p, raife a perpendicular to q, in the diagonal A, a; and from q, draw to S, cutting the diagonal $I \mathrm{I}, 8$, in r; from r, drop a perpendicular, meeting the ray p, S, in t; which is the point fought: and fo of the reft.

N. B. The fecond diagonal I', 8 , is that iffuing from the corner of the wall, in this place; and is parallel (in the geometrical) to 6,1 , in the former fquare ; and the reafon for ufing thefe different diagonals, is that A, a, projects obliquely forwards, and $1 \mathrm{I}, 8$, projects at right angles to it, or obliquely backwards.
Fig. 69. No. 2. The operation is, here, for an inner angle, exactly the fame as in the former, for an outer angle, to the determination of the outlines of the mouldings inclufive; after which, the difference is, that from a, and the reft of the projections (in the former) the line $a, 6$, with thofe under it, are parallels; whereas, in this latter, they are all rays from S ; and the line $a, 8$, with thofe under it , in the former are rays, but in this latter are parallels.
Fig. 69. No. 3. Omitting the geometrical elevation, only knowing the meafures; let it be required to project the cornice (for inftance, of the Ionic order) immediately on a given part of the picture, without raifing it higher (as in the former example). Draw A, B, for the uppermoft line; and from B , to A , (the geometrical projection of the whole cornice) fet off the feveral parts of that projection; draw from B, to d, the diffance, brought down to the horizontal line, and from: A, to C, the center, cutting B, d, in a; then a, B, will be the perfpective diagonal of the cornice. Now draw from all the divifions between A , and B , to C , cutting the diagonal a, B; and, from all thefe interfections, drop perpendiculars, and another perpendicular alfo from B ; and, on this laft, mark the feveral geometrical heights of the members; and from thefe points, draw to d, cutting all the perpendiculars, and their refpective interfections will determine the perfpective projections of all the members, by which the cornice will be completed; (e.g.) e, C , cuts the diagonal in f, and e, d, cuts the perpendicular f, E, in E , which determines the projection of that member, and fo of the reft.-The points of the projection being thus found, may ferve either for an outer angle, (as here,) or for an inner angle, (as in the laft example,) the perfpective extremities remaining the fame. And if an inner angle be required from any other
point in B, C, as G, draw G, d, cutting A, C, in k; then G, k, will be (perfpectively) parallel to B, a, and, confequently, will reprefent ,the diagonal, by which fuch inner angle may be completed, as the outer was by means of B, a.
Fig. 69. No. 4. When it is required to project a cornice (as here of the Corinthian order) not parallel to the picture, from a point given, as B; draw firt the geometrical diagonal of the projection B, A, paraliel to the horizontal line, and mark on it the angular projections of the feveral members; and having bifected the right angle d, D, d, and continued the line of bifection to 0 , in the horizontal line, and brought down the diftance $0, \mathrm{D}$, from D , to $D^{\frac{1}{t}}$, draw B, o, and A, $D_{2}^{\frac{1}{2}}$, cutting it in a; then B, a, will be the perfpective diagonal. Now draw from all the divifions of A, B, to $D_{\frac{1}{2}}$, cutting $\mathrm{B}_{\mathrm{a}} a$, in the feveral perfpective points of the diagonal, from which drop perpendiculars, as alfo one from B; and, on this laft, mark the geometrical heights of the feveral members; and, from all thefe points, draw to 0 , cutting their correfpondent perpendiculars, which interfections will determine the angular points of the cornice; and drawing lines from every one of thefe angular points, to the vanifhing points d, and d, the cornice is, thus far, completed.

And, for the inner angle H , draw $\mathrm{H}, 0$, and a, d, cutting it in b, which gives this diagonal; and divide it, by drawing from the feveral divifions on B, a, to d; then dropping perpendiculars, from the points thus found, in H, b, they will meet their refpective correfponding lines (already drawn) from the perfpective angular points of the outer angle B, to d, and thefe laft interfections will determine this inner angle.

The fame operation determines the outer angle G, with thefe only differences, that the diagonal of this laft is not parallel, but perpendicular to the two former, (as was particularly explained at the N. B. of No. I, weith refpect to that Doric cornice); and the lines run to the oppofite vanifhing point d.
N. B. The manner of finding the facdows of thefe cornices is explained in the Supplement.

Fig.

Fig. 69. No. 5. In this, and the following figures, the fkeleton, or cafe only, of the whole cornice, is projected in ftraight lines, that the reafon of the operation may appear more fimply and clearly, unembarraffed with that number of points, and lines, which are neceffary in determining minutely each member.

The center and diftance being given, as ufual, draw firf the fquare $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{F}$, for the breadth of the folid; then draw A, C, and D, E, cutting it in G ; draw G, H, parallel to A, E, and draw E, C, cutting it in H , which will give the cubical perfpective of the folid; produce B, A, to I, making A, I, equal to A, E, for the projection of the whole cornice, (which, in four of the orders, is equal to the height, according to moft architeets; (i.e.) in all but the Doric); draw C, I, and 3 , E cutting it in K ; and I, H, cutting the fame line C, I, in L ; then draw $2, \mathrm{~F}$; and laftly draw K, M, (parallel to A, B,) cutting 2, F , in M , which completes the figure.
N. B. A, E, is the height of the cornice; and A, K, is the diagonal of its projection.
Befides that the pricked lines, within, fhew the conformity of this operation to the former figures, let it be confidered that the triangle $\mathrm{K}, \mathrm{A}, \mathrm{E}$, reprefents the angular projection of the whole cornice; for 3,4 , is the vanifhing line of the plane of that triangle, and 3, the vanifhing point of K, E; as the triangle $\mathrm{L}, \mathrm{H}, \mathrm{G}$, reprefents another projection of the cornice (the plane of which is perpendicular to $\mathrm{K}, \mathrm{A}, \mathrm{E}$,) whofe vanifhing line is therefore $\mathrm{I}, 2$, and the vanifhing point of H, L, is I . The other angles are determined in the fame manner; for 1,2 , is alfo the vanifhing line of the triangle M, B, F, it being in the fame plane as L, G, H, and 2 , the vanifhing point of F, M; fo is alfo 4,3 , the vanifhing line of $\mathrm{P}, \mathrm{N}, \mathrm{O}$, this triangle being in the fame plane with $\mathrm{K}, \mathrm{A}, \mathrm{E}$; and 4 , is the vanifhing point of O, P.
${ }_{1}, \mathrm{C}, 3$, is alfo the vanifhing line of the plane $\mathrm{K}, \mathrm{L}, \mathrm{H}, \mathrm{E}$; for 1,3 , and C , are all vanifhing points in this line: 2,3 , is the vanifhing line of the plane K, E, F, M; and 1,4 , is the vanifling line of the plane $\mathrm{L}, \mathrm{H}, \mathrm{P}, \mathrm{O}$; and $4, \mathrm{C}, 2$, is the vanifhing line
of the plane $\mathrm{M}, \mathrm{P}, \mathrm{F}, \mathrm{O}$; for 4,2 , and C , are all in this line, \& $\mathrm{i}_{\mathrm{k}} \mathrm{c}$. Fig. 69. No.6. If the cornice be Doric, as that projects more, in proportion to its height, than the other orders, all the difference is in taking A, e, inftead of A, E, with its correfpondent meafures, \&cc. which will neceffarily give 3,2 , in this fcheme, for a vanifhing line, inftead of 3,2 , (at No. 5.) and 1,4 , inftead of 1,4 ; the reft of the operation being the fame as above.
N. B. In this figure, the plane $M, p, f, 0$, happens to fall in the vanifhing line 4, C, 2.
Fig. 69. No. 7. This figure (which is feen by the angle) cannot need much explanation, after what has been already faid; the lines e, f, and g, b_{2} being (with e, g, and f, h) in a plane parallel to the picture, have no vanihhing points; a, b, has o, for its vanihing point; and i, k, has p : for as this vanifhing line $0, p$, paffes through the center of the picture, the diffances $C, 0$, and C, p, are to C, d, (the diftance of this vanifhing line) as the fide of a fquare to its diagonal; by which means the height and projection of the cornice keep their proportions, the angular projection being to the height, as the diagonal of a fquare to its fide, in the four orders, which have their heights and projections equal. Hence it is evident, on infpection, that the perfpective angle b, a, q, (or $\mathrm{C}, a, 0$, reprefents the geometrical angle C, d, o, as s, k, i, (or C, k, p,) does C, d, p.
Fig. 69. No. 8. This figure differs from the laft, only, in its being obliquely fituated to the plane of the picture in every refpeet, the laft having the lines e, g, and f, b, parallel to it.

The fcheme fufficiently fhews the operation, on the principles fo: often explained; the letters a, c, g, and k, mark the angles of the cornize, as in the former; and 0 , is the vanihing point of a, b, found by making $0, \frac{1}{2}$, as the fide of a fquare, to $\frac{t}{2}, y$, the diagonal, (which $\frac{1}{2}, y$, is equal to $\frac{1}{2}, D$, the bifection of the angle E, D, F,) for this is the proportion of q, b, to q, a. $\mathrm{E}, 0$, is the vanifhing line of the plane a, e, f, b; and $\mathrm{F}, 0$, the vaniming line of the plan: a, g, b, b

Sing. Ci. T_{5}^{10}

The FIFTH PART. OF SHAD OWS.

THAT part of perfpective, which relates to the projection of fhadows, is lefs neceffary, than any of the preceding parts, and is wholly omitted by Pozzo, in his treatifes on the fubject, though one of the greateft mafters in the executive part, and who feems to have done every thing elfe by rule.

However, it was thought proper to give a few examples, not only of cafes that moft commonly occur, in the courfe of practice, but alfo of fome others lefs ufual, and more difficult, to fhew the application of thefe principles to this purpofe, as well as to correct the miftakes of fome writers on the fubject.
Fig. 70. No. I. In this fcheme, the light is fuppofed to come from the fun, which being confidered as at an infinite diftance, the rays are treated as parallel ; but it does not follow, that therefore the fhadows muft be reprefented parallel, except in one cafe, (and that very rare, which is, when the rays are parallel to the picture; an inftance or two of which fhall be firft given.

The rays of light are here fuppofed to come from the fun, and are not only parallel among themfelves, but alfo to the picture, and therefore the moft fimple, and moft eafy to project. Any one ray, as f, g, being drawn in the direction required, all the reft muft be parallel to it. Draw from F , the bottom of the line $f, \mathrm{~F}$, a parallel to the horizontal line, meeting f, g, in g, which determines that fhadow; for g, is the fhadow of f, on the ground, and F, g, of the perpendicular line F, f; and fo for each perpendicular line, as, for h, i, draw h, H, parallel to f, g; and i, H, parallel to the horizontal line, meeting in H ; and $k, \mathrm{~K}$, parallel to f, g; and, laftly, $l, \mathrm{~K}$, parallel to the horizontal line, meeting in K ; and the fame operation for the open door, which completes the whole.

$$
\mathrm{N}=\quad N . B . \text { If }
$$

The PRACTICE

N. B. If one only of the points g, or H , had been found, the other would be determined, by drawing through that, already found, to S , the vanifhing point of $i, \mathrm{~F}$, which is perfectively parallel to $\mathrm{H}, g, 8 \mathrm{c}$. -for H, g, the fhadow of b, f, is parallel to it in the original, and therefore both run to the fame vanifhing point S.
Fig. 70. No. 2. This figure, though two walls only, is exhibited, to fhew the manner of determining the fhadow on a plane ftanding obliquely to the horizontal line. Having drawn B, E, parallel to A, b, the direction of the rays, as in the former, and G, E, parallel to the horizontal line, meeting it in E, G, E, will be the fhadow of G, B; but as it is interrupted by the wall C , L , raife a perpendicular at L , (where G, E, cuts the bottom of that wall) and draw A, C, cutting it in e; then C, e, will be the fhadow of the line B, C, on the plane C, L; for, all the rays are parallel to A, b, and b, is the vanifhing point of B, C, therefore A, b, is the vanifhing line of the plane made by the rays which pafs through the line B, C; and ($a, \mathrm{~A}$, being. the vaninhing line of the wall C, L,) A, is the vanifhing point of the common isterfection of the two planes, whofe vanifhing lines are b, A, and a, A; therefore A, is the vanifhing point of the fhadow C, e, of the line B, C, on the wall C, L.

If the reader finds any difficulty in conceiving this, let him imagine the wall C, L, continued to its vanifing line $a, \mathrm{~A}$, and the plane of rays to its vanifhing line b, A, thefe planes will then interfect at A; and as both planes pafs through the eye, fo alfo muft their interfection, which will be a line from the eye terminating in A. - It cannot be forgot, that all lines, drawn from the fame vanifhing point, are, perfpectively, parallels ; (i.e. reprefent lines geometrically parallel;) wherefore if D, were brought forwards on S, perpendicular to the picture, it would reprefent the eye, and D, A, the interfection fought. Now A, C, e, reprefents a parallel to D, A, in this fituation of D.
The point e, however, might have been determined by the line B, E, interfecting the perpendicular from L, in this particular cafe, as the wall breaks the fladow G, E, in L; but, otherwife, the seneral rule is as above.

Fig,

Fig. 70. No. 3. Is the fame fubject, with this only difference, that the wall C, L, is fhorter, on which account, the fhadow G, E, of B, G, is thrown, wholly, on this fide of it , fo that the line $\mathrm{G}, \mathrm{L}, \mathrm{E}$, cannot interfect the bottom; which difpofition is chofen, on purpofe to flew the ufe of the vanifhing point A, in determining the direction of the fhadow on the wall C, L, as explained above.
Though this alfo might have been found, by continuing the line N, L, till it cuts G, E, in L , and there raifing a perpendicular, meeting the ray B, E, in e, and then drawing C , e--But inftead of all this work for the direction of one line, nothing more is neceffary, than drawing from A , through C , as has been explained.

If the line a, N, L, be continued, and the ray A, c, till they meet in E; and the parallel E, G, be drawn, and alfo the line b, N, G, till it meets E, G, in G; and the perpendicular G, B, be raifed, and b, c, B, continued, till it meets B; and the ray B, E, be drawn parallel to A, b; then the fhadows (reprefented by c, e, and G, E,) brought down to G, E, will unite in E, and, by that means, illuftrate the whole operation,
Fig. 71. No. 1. Here, though the fhadows are geometrically parallel among themfelves, they are, neverthelefs, oblique with refpect to the picture (as is generally the cafe); and, for this reafon, the fhadows will all tend to the fame vanifhing point in the horizontal line.

U , is the vanifhing point of the rays of light, found by drawing from the eye, to the picture, in the direction chofen, or given, for that purpofe. To conceive this, fuppofe $D, \mathrm{~S}$, raifed up, on S , till perpendicular to the picture: in that fituation, D, U, is the parallel of the rays, cutting the picture in U, which is therefore the vanifhing point of them.

And raifing a perpendicular from U, to the horizontal line, cutting it in V, that will be the vanifhing point of all the fhadows, calt on the plane of the horizon, by all objects perpendicular to that plane; fo that the fhadow of any point is found, by drawing firft from fuch point to U; and then from the feat of the fame point to V : for inftance, from the point b, (of the object A,) draw to U; and again from B,
the feat of b, draw to V, cutting b, V, in b; this will be the fhadow of b, on the ground, and B, b, will be the fhadow of the whole line b, B : in like manner, drawing c, U, and C, V, cutting it in e, that is the fhadow of c; and thus is alfo found f, the madow of f : after which, by joining all thefe points, is completed the whole fhadow of the object A, on the ground.

For the fhadow of the octaedron, the feveral points of it marked $1,2,3,4$, are all found in the fame manner, viz. by drawing from the feveral angles to U, and from their feats refpectively to V, each angle, feat, and fhadow, being marked by the fame character; for inftance, 2 , the angle on the body of the octaedron; 2 , its feat perpendicularly under it; and 2, its fhadow; and fo of the reft. Thus alfo may be found the hadow of any object not perpendicular, by finding the perpendicular feats of the principal points, and ufing fuch feats, and points, as perpendicular lines; (e.g.) having found g, the feat of E, draw E, U, and g, V, interfecting in h, that will be the fhadow of E; and drawing b, G, is determined the whole thadow, on the ground, of the pole G, E.

But for thofe hadows, which fall on planes not horizontal, fome other expedients are to be ufed, as that of A, on the parallelopiped H. Having firft found the fhadow on the horizontal plane, raife two perpendiculars where that fhadow touches the edge, (as at i, and k,) to l, and m; and fince the upper fide is parallel to the horizon, draw from l, and m, to the fame vanifhing point V, which determines it: fo alfo is found the fhadow of the cube on the bottom of the parallelopiped A, firft drawing a perpendicular from n, upwards (where the fhadow on the ground cuts the line n, B,) and determining the top of that perpendicular w, by the line $0, U$; then for the point p, continue V, \int, backwards, till it cuts q, S, in r; at r, raife a perpendicular to t; draw t, U, which finds the point p; and, laftly, draw p, w, which finifhes that fhadow. Or if B, n, be continued backwards, till it meets q, S, as in x, and a perpendicular be there raifed, cutting the line $0, S$, in y, a line drawn from y, to w, will find the fhadow p, w.

N. B. This

N. B. This line y, p, w, runs not to any vanifhing point, becaufe it is parallel to the picture.
The fhadow, on the ground, of the plank, that refts upon the cube, is found by dropping a perpendicular from the point, where it touches the edge, to the ground; and drawing from the top to U, and from the bottom to V, is found one point on the ground, which is fufficient. For, drawing from N, through that point, to the horizontal line, is found the vanifhing point M, of the fhadow on the ground; to which vanifling point, draw from the other corner of the plank, which refts on the ground, and one line more (from the top of the plank to U,) completes this fhadow, fuppofing the whole of it on the ground : that part of it, on the upper face of the cube, is found, by drawing from the points, where the plank touches it, to the fame vanifhing point M ; and that other part, on the front of the cube, by continuing the line, of the bottom of the cube, from q, through the fhadow on the ground to z; then drawing from the points in which the plank touches to z, and \dagger. The reafon of this operation is obvious; for, fuppofing the front of the cube to extend beyond z, the fhadow of the ground would there meet it, and that part of the fhadow, on this face, muft be between the points in which the plank touches the cube, and the ground at \dagger, z.
Here are added four perpendicular pofts, on the fame line, to fhew, that though the fladows of them are geometrically parallel, yet as they are not caft in a direction parallel to the pifture, (in which cafe they would be parallel, and equal, in perfpective,) they muft, in this direction of the light, have all the fame vanifhing point V, and, therefore, cannot be parallel in their reprefentations, nor of equal lengths, though they are all of the fame height, or depth, on the picture, from the front line on which the pofts ftand.

The error of making the fhadows parallel, in this cafe, is to be obferved in the Jefuit's Perfpective. The author might poffibly be mifled, by confidering, that as the fun is fo large a body, and fo diftant, the rays of light from thence defeend in parallel lines, or (which is the fame thing) in lines not to be diftinguifhed from parallel ,
parallel; but he fhould alfo have confidered, that all paraliel lines, not parallel to the picture, will, on the picture, have a common vanifhing point, to which they mutually tend, as the prefent cafe requires, and which makes fo great a difference in the reprefentation. For all lines, in perfpective, are fuppofed to pafs through the eye of the fpectator, and to meet the plane of the picture fomewhere (except thofe which are parallel to that plane); and the point wherein any line, fo paffing through the eye, interfects the plane of the picture, will be the vanifhing point of all other lines parallel to that line.

This is the very conftruction of a vanifhing point, on which almoft the whole practice of perfpective depends.
N. B. In the Jefuit's Perfeective, the $3^{\text {d }}$ edition, tranflated by Cbambers, 1743 , page 132, the fecond example is falfe, as the extreme lines of the fhadow (though caft forwards) are made geometrically parallel, which fhould run to a vanifhing point in the horizontal line, and would then reprefent parallels; and, in the text, the reader is inftructed in this falfe method. Page 133, falfe, inafmuch as all the lines, at the feet of objects, (i.e.) the direction of the fhadow which ought to run to a vanifhing point to reprefent parallels, are made geometrically parallel to $\mathrm{H}, \mathrm{K}, \mathrm{L}$, and the reader is inftructed fo to make them. Page ${ }_{134}$, is right, where the fun is directly behind; and he is right alfo, where the fun is fuppofed to caft the fhadows parallel to the picture; but he is falfe in every oblique direction, which directions are much more frequent than any others. Thefe errors are plainly owing to his not underftanding (or not confidering) the neceffity, and ufe of vanifhing points; perhaps he was fenfible of the difficulty of oblique directions, which feems to be the reafon that, for five pages together, all the fhadows are caft in the fame direction, (i.e.) all of them parallel to the picture; fo that they afford no variety, except of the objects; that is, no variety of inftruction, or any cafes that
need it. His fhadows, from artificial lights, are true ; but no difficult or intricate cafes àre given, either of objects placed obliquely, or fhadows thrown on planes oblique to each other ; but all on planes parallel, or at right angles to each other.
And moft of the miftakes into which many painters, and writers on this fubject, have fallen, (who perhaps may not have been altogether deficient in fcience) are owing to the attention to objects, as they appear generally in nature, without referring their appearances to the eye of a fpectator fixed to a point, or without fufficiently confidering what kind of images fuch appearances, in nature, muft neceffarily form, on a tranfparent plane, between the eye and object, in every different direction.

It was faid above, that by drawing a perpendicular from U, to V, this laft would be the vanifhing point of the fhadows of all lines perpendicular to the horizontal plane; and alfo, that the Chadows of any other lines (not perpendicular) might be determined, by finding the feats of any points on the ground, and drawing from fuch points to U, and from their feats to V ; and thus was found b, the fhadow of E , and the whole fhadow of the octaedron, and other objects.

But to fhew the extenfive ufe of vanifhing points, here is added another method for oblique lines: 7,8 , is a poft inclined to the horizon, but parallel to the picture. Draw from U, a parallel to 7,8 , cutting the horizontal line in u, which will be the vanifhing point of the fhadow of 7,8 , on the ground; draw $8, U$, and $7, u$, cutting it in 9 ; then 7,9 , is that fhadow, without farther operation: and if there were many lines in the fame direction, that is, parallel to 7,8 , it might be worth while to find their common vanifhing point u, to which all their hadows would tend; but, otherwife, it may be determined by the vanifhing point V ; for dropping a perpendicular from 8, to 10 , this will be its feat; wherefore, having drawn $8, \mathrm{U}$, as before, draw 10, V, which finds the fame point 9 ; then drawing 7,9 , that will find the fame fhadow.

The reader will obferve, that the poft 7,8 , though not perpendicular to the horizontal plane, is, however, parallel to the piiture;

The PRACTICE

and in cafe of any obliquity in an object, if ftill paraliel to the picture, a line, as U, u, drawn parallel to fuch obliquity, will always truly find u, the vanifhing point of the fhadow. For the triangles $u, 9, U$, and $8,9,7$, are fimilar, as well as the triangles $V, 9, U$, and $8,9,10$; and the line $8,9, \mathrm{U}$, is common to both pair of triangles; therefore it muft be divided in the fame point 9 , by either of the correfpondent lines $7, u$, or $10, \mathrm{~V}$.

But when the original is not only oblique to the horizon, but alfo to the picture (as the poft 11, 12) ; then the vanifhing point of fuch oblique line muft be found by means of a fcheme like that at Fig. 63, which (if underftood) will render this intelligible. Or the vanifhing point of 11,12 , for inftance, which is fuch an oblique line, and whofe feat is 13,12 , may be found, by continuing the line 13,12 , to its vanihhing point S; thence dropping a perpendicular; and, lafly, continuing the projected line 11,12 , till it cuts that perpendicular in Θ, which is the vanifhing point fought. This poft leans forwards, in an angle of 65 , marked at D; (i.e.) the angle S, D, Θ, and whofe vanifhing point being Θ, below; thence draw through U, till it cuts the horizontal line, which interfection will be the vanifhing point of the fhadow; and having drawn 11, U , (as in all the former cafes) draw from 12, to that vanifhing point, cutting 11, U, in 14, and then 12, 14, will be the fhadow fought. To fhew that this fhadow is truly found, draw from 13, the feat of 11 , to V, which will cut $11, V$, in the fame point 14 , and is a proof.
$N . B$. When the vanifhing point is firf given, then the feat is found by drawing a perpendicular from Θ, to the horizontal line, cutting it, as in S; then drawing $S, 12$, and a perpendicular from 11 , cutting it in 13 .
And this will be general, for any line, viz. to draw from its vanifhing point, through the vanifing point of the ray of light, to the vanifhing line of the plane on which the fhadow is to be projected, whether it be the horizontal plane, or any other; and this interfection, with the vanifling line of the plane on which the fhadow is caft, will be the vanifing point of the fladow. For (in this fcheme) imagine
the plane D, S, Θ, raifed on S, Θ, till D, S, be perpendicular to the picture; then a line D, U, determines the vanifhing point of the rays; and, confequently, a line through Θ, and U, to the vanifhing line of the horizon, will give the vanifhing line of the plane of rays paffing over the whole line $\Theta, 12,11$, and therefore, alfo, the vanifhing point of the fhadow 12, 14. See this farther explained in the Supplement.
Fig. 71. No. 2. Is a cube on an inclined plane; a, S, b, is the vanifhing line of that plane, W, is the vanifhing point of the lines 1,2 , -$3,4,-5,6$, and 7,8 ; wherefore, having given U^{2}, for the vanifhing point of the rays, draw from W, through U^{2}, to V^{2}, (in the vanifhing line $a, S, b ;$) and then, drawing from 3,5 , and 7, to U^{2}, and from 4,6 , and 8 , to V^{2}, the fhadows of 3,5 , and 7 , are determined, which are all the points neceffary for completing the whole fhadow. Fig. 7r. No. 3. In this fcheme the object is (as the laft) on an inclined plane, and the fun obliquely behind the object; on which account U, the vanifhing point of the rays, will be above V , the vanifhing point of the fhadows; for it is to be always remembered, that every vanifhing point is formed by a line paffing through the eye parallel to the original ; and wherefoever fuch line cuts the plane of the picture, that interfection is the point fought. Now if the fun be beyond the object, a parallel to its rays will, neceffarily, cut the picture fomewhere above; and as S, is the center of the picture, and S, D, its diftance, imagine D, S, raifed on S, perpendicular to the picture; in that fituation, D, U, is the parallel to the rays (whofe direction is fuppofed to be given) ; therefore U, is the vanifhing point of thofe rays; and as P, is the vanimhing point (which will be perfpectively perpendicular to the vanifhing line a, C, b, and) of I, P, and all its parallels, draw U, P, cutting the line a, C, b, in V , and that will be the vanifhing point of all the fhadows; wherefore, drawing $U, I, U, 2, U, 3$, and then from V, through the feat of each line, the points 1,2 , and 3 , of the fladow, are found.
Fig. 71. No. 4. In order to fhew the conformity of operation, here is added the fame figure, with fimilar circumftances, on the plane of the
horizon. U, V, is, in this fcheme, therefore, geometrically perpendicular to the vanifhing line a, S, b, and parallel to the lines $\mathrm{I}, p,-$ $2, p,-3, p$, whofe fhadows are fought. The reft needs no explanation.
$N . B$. In this, and all the former, after having drawn U, I, or any one of the rays, and V, P, interfecting it in J , all the other points of the fhadow may be found, by only drawing through the bottoms, or feats, of the remaining lines from V, and then drawing to the vanifhing points a, and b, of the figare, which will find the points 2 , and 3 , as $1, a$, finds 2 , and $2, b$, finds 3 , \&c.
Fig. 7r. No. 5. Here is once more the fame object, with the fun behind it; V, the vanifhing point of the fladows coinciding with S; U_{2} the vanifhing point of the rays perpendicularly above it. Having drawn U, I, and $V, 0$, cutting it in 2 , the reft is determined as in the $N . B$. of the laft, viz. by means of the vanifhing points a, and b; and as the cube is a little oblique before S , the ray $\mathrm{U}, \mathrm{I}, 2$, determines the plane of 2 , by which the whole is completed, as has been explained. But if the cube had been directly before S, it would have been very difficult; or if the object had been a fingle line, as 4, 7 , it would have been impoffible, without an expedient; becaufe the ray $\mathrm{U}, 6$, and the line of the fhadow $\mathrm{V}, 7$, coincide; in which cafe, draw $V, 8$, at pleafure, and from 7 , draw a parallel to a, S, b, cutting it in 8 ; draw 8,9 , parallel to 7,4 , and equal to it; draw U, 9 , cutting $V, 8$, in 3 ; lafly, draw 3,6 , parallel to 8,7 , which determines the point 6 .
Fig. 72. No. I. In this fcheme, the light O, is fuppofed that of a candie, or other luminous point, whence it is diffufed every way as from a center; its foot, on the ground, is F. In order to find the thadow of the door b, e, b, draw F, b, cutting S, H, in g; there raife a perpendicular, and draw O, e, cutting it in c; then b, g, will be the fladow on the ground, and g, c, on the fide of the room; and to find the direction of c, f, as a is the vanifhing point of the top and bottom of the door, draw a, b, H, cutting: $\mathrm{S}, \mathrm{H}_{2}$

S, H, in H ; and then H , will be the interfection of the plane of the door with the plane on which this part of the fhadow is caft; draw H, i, parallel to b, e, and a, b, e, cutting it in i, which will be the point wherein the line a, b, e, meets the fame plane; wherefore draw i, c, which will be the direction, fought, of the fhadow c, f; laftly, draw f, b, which completes the whole fhadow.

It is evident, that if the plane of the door was continued, it would meet the fide of the room in H, i; and the point c, having been found by the perpendicular g, c, the direction of the fhadow, paffing. through c, mutt be i, c, f.

Or the fhadow b, f, c, might be found by a method more geometrical, thus.
Fig. 72. No. 2. Having drawn F, b, g, (as before) and the perpendicular g, c; and alfo having drawn a, b, H, and the perpendicular H, i, and a, b, e, cutting it in i; and found the vanifhing line a, k, of the plane of rays paffing through the line a, b, e, i; from k, the interfection of this vanifhing line with S, k, the vanifhing line of the fide of the room (on which part of the shadow is caft) draw k, i, cutting g, c, in c, and the angle of the room in f; and draw b, f, which finifhes the fhadow.
N. B. The vanifhing line a, k, is found, by drawing a line through a, parallel to Θ, m; for Θ, m, reprefents a ray parallel to the picture, found by drawing F, l, parallel to the horizontal line, and l, m, perpendicular to it, cutting a, b, e, in m; and then, drawing Θ, m.
Or (without ufing the vanifhing line a, k, draw Θ, a, and F, a, raifing a perpendicular at the interfection of it, with the edge of the room, cutting Θ, a, in 0 , which will be the foot of the light on the fide of the room; and $\Theta, 0$, will be perfpecively in the direction of (or parallel to) e, b; wherefore draw $o, b, f, \& c c$.
This is farther explained in the feveral manners following, becaufe many fuch cafes happen, and the underfanding this, fully, may be of great ufe. a, b, continued, cuts the fide of the room in H , and.
a perpendicular being raifed at H, and a, b, e, continued, they meet in i.-So that if the plane of the door was continued, H, i, would be the extreme edge, touching both that fide, and the floor of the room, and could have no fhadow, either on the fide, or below; but, in that cafe, there would be a fhadow above; becaufe f, is the angle of the room, and b, f, being in a plane parallel to the picture, and f, i, in a plane perpendicular to it, the whole fhadow would be the triangle b, f, i; for Θ, F, l, m, is a plane parallel to the picture, and m, e, b, a, the edge of the top of the door, continued to the horizon at a; therefore Θ, m, (being parallel to the picture) may be confidered as the interfection of the plane of rays, paffing over the top of the door; and, confequently, a, k, (parallel to it, pafing through the eye, and cutting the picture) is the vanifhing line of that plane; and, cutting S, k, the vanifhing line of the fide of the room, on which part of the fhadow is caft, k, will be the vanifhing point of the interfection of thofe two planes, viz. of the rays, and fide of the room; wherefore, drawing k, i, this line determines the fhadow c, f, and drawing b, f, the whole is determined.

Or drawing b, f, parallel to a, k, meeting the angle of the room, that will determine the point f, by which f, c, is found; for the plane of the rays is parallel to a, k, and b, f, is parallel to the picture, and is interfected by the plane which generates the vanifhing line a, k; as a, k, is the vanifhing line of the plane of rays paffing through the line a, b, e, i; and o, b, f, being the interfection of that plane, with the plane on which that part of the fhadow is caft, b, f, muft be parallel to a, k. Again, 0 , is the feat of the light on the plane of the fhadow, and b, is the feat of e, b, on the fame plane; therefore b, f, the fhadow of e, b, muft be the continuation of the line o, b; and that line is neceffarily parallel to a, k, (by conftruction) becaufe the plane of this part of the fhadow is parallel to the picture; and the plane Θ, m, i, k, a, cuts both the plane of the picture in a, k, and that which reccives the fhadow in $0, b, f$, which two latter are parallel planes.

The other door l, q, k, in No. I, is opened at right angles, and,
and, confequently, S, is the vanifhing point of the top and bottom. Draw F, k, cutting the fide of the room in m; raife a perpendicular m, n; draw O, l, cutting m, n, in n; then draw S, n, cutting the angle of the room in p; and join p, q, which finifhes the fhadow. Or q, p, might have been firft found thus: Draw O, S, and, in that line, find t, by a perpendicular from the interfection of F, S, with the bottom of the room, which point t, is the feat of O , on the plane p, q, that is, the farther fide of the room; and drawing t, q, p, that will be the direction of the fhadow, on this plane; and draw S, p, and O, l, meeting in n.

The two fquare blocks, A, and B, againft the wall, are introduced to fhew the courfe of the fladows, which need little explanation; only it is to be obferved, that t, being the foot of the light on the wall, is to be ufed, on that plane, as F , on the floor. Thus draw from t, through all the points which touch the wall, to the beginning of the cieling, and through thofe interfections (with the edge, or angle of the cieling) draw from S ; then from O , draw through the projecting angles, of each block, lines meeting all thofe rays from S, and the feveral points of the fhadow, on the cieling, are terminated:

The fhadow of the hollow fquare C , is found in the fame manner, only remembering, that as t, reprefents the foot (of the light) on the wall, and as the depth of the hollow is to be regarded in cafting the fhadow, fo the foot muft be as low as that depth, which is found by drawing from the top of one of the lines, viz. is, to t, and a parallel to it from the bottom of the fame line 2 , cutting O, S, in V, which will be the foot of the light for this hollow; then drawing $\mathrm{V}, 2$, and O, 1 , meeting in 3 , draw from 3, a line parallel to $1, z$, which will give the indefinite fhadow of s, z, in the bottom; and draw from i, meeting that line where it interfects the angle of the upper fide; and one more line from O, through z, cutting the parallel from 3, which gives the determinate fhadow of z, and completes the whole. Or the fhadow of the line \approx, 1 , (on the upper plane of the fquare hollow) may be found, by means of the foot of the light on that plane, thus. Continue the line from I_{2}, parallel to. the $=$
the horizontal line, and continue the perpendicular from t, till that cuts it; then draw a line from S, through that interfection, and a perpendicular from O , cutting it; and from this laft interfection (which is the foot of the light) through I , draw the fhadow fought, and a line from O, through z, determines the length of it.

Then, for the fhadow of the ladder, draw from its vaniging point 4, through O, and from S, through F, meeting in G; draw from G, through each foot of the ladder, to the interfection of the floor with the farther fide of the room continued, cutting it in 5 , and 6 ; then, where G, F, S, cuts the fame line of interfection (as at 7,) raife a perpendicular, cutting $G, O, 4$, in A, and draw $A, 5$, and A, 6, which lines will cut the top of the ladder, and (having before drawn $G, 5$, and $G, 6$,) by thefe means the whole fhadow is found from G, to 5 , and 6 , on the floor, and from A, to 5 , and 6 , on the wall, fuppofing no other object to intervene.

For $G, O, 4$, is the line in which all the plane of rays muft pafs to the two fides of the ladder $G, 4$, reprefenting a line parallel to them, paffing through the light O , and touching the ground in G, and the wall in A.
But as $G, 5$, and $G, 6$, meet the other fide of the room in 9 , and 10 , draw from thefe laft points to 4 , which will determine that part of the fhadow, and would meet $A, 6$, and $A, 5$, in their interfections with the angle of the room, if there were no door, or if the door were fhut.

Again, as the door will alfo receive part of the fhadow, draw from 11, and 12 , (where G, 5, and G, 6 , meet a, H, the interfection of the plane of the door) to 13, and 14, where A, 6 , and A, 5 , interfect the edge of the door, which completes the whole fhadow. Or the vaniming points of thefe two lines $I_{1}, 13$, and 12,14 , may be found, by raifing a perpendicular at $a_{\text {; }}$, which perpendicular will be the vanifhing line of the plane of the door; and from F, and G, (both in the horizontal line) drawing $F, 4$, and $G, 4$, cutting that vanifhing line, in their refpective vanifhing points f, and g; and thon drawing $f_{3} 14$, and $g, 13$, is found the fhadow on the door.
N. B. This is farther explained in the Supplement.

The fhadow of the table on the ground is determined, by drawing lines from F, the foot of the light, through each angle of the table, on the ground; and then drawing from the light, itfelf, through all the upper angles, meeting thofe lines from F, refpectively. And for that part of the fhadow on the door, continue the line of the bottom of the door k, w, till it meets F, x, as in y; at y, raife a perpendicular, cutting O, x, in L; draw L, S, which determines the fhadow on the door, and completes the whole.

The fhadows of the windows are found, in a like manner; for instance, the window E. Find the foot of the light on the plane E, which is to receive the fhadow, thus: Draw a parallel from F, cutting the fide of the room, 15 , continuing the line $F, 15$, and find, there, the thicknefs or depth of the window 15,16 ; draw 0,17 , parallel to $F, 16$, and 16,17 , parallel to F, O; then 17 , will be the foot of the light fought: draw 17, 18, and O, 19, cutting it in 20; from 20, raife a perpendicular, cutting the inner lines of the window, which determines the fhadow; and fo of the reft.-For the roind window, the like method is ufed, the fame point 17 , being the foot of the light, for that whole plane; take two or three lines from the outer, to the inner circle, parallels to 0,17 , and draw from 17 , through the bottoms and from O, through the tops, and their feveral interfections will give the points of the fhadows, \&c. on the inner plane.
N. B. At Fig. 72, No. 3, and 4, in the Supplement, is the continuation, and conclufion of what relates to jaadows.

Of the images or reflections of objects in reffecting planes.
Fig. 73. N this fcheme are reprefented the reflections of feveral objects, in the water. Every object is feen as far, or deep within the reflecting plane, as it is placed without it. Thus, to find the reflection of the pile A, part of which is in the water, and the reft above the furface of it, meafure from the top to that furface, and fet off the fame meafure downwards to a.

The PRACTICE

But for the pile B, which inclines, the perpendicular height from the furface of the water muft be taken. If it inclined f , as to continue ftill parallel to the plane of the picture, then a perpendicular from the top would touch the water at 2 , in which cafe, $\mathrm{B}, .2$, would be the meafure to be taken downwards, and then the reflection would be equal to the reprefentation of the object; and if it inclined inwards, fo as that the top was perpendicularly over I , then B, I, would be that meafure (horter than the reprefentation of the objeCt); if forwards, fo as to be perpendicularly over 3 , then $B, 3$, is the meafure, which is the meafure here taken, and 3,3 , is the perpendicular depth of the reflection, which therefore makes the reflection longer than the reprefentation of the object.

The principal difficulty, in moft reflections, is to find the feat of the object on the furface of the reflecting plane; for when that is found, the reflection is made, by repeating that diftance either geometrically, or perfpectively, as the cafe may require, in, or on the reflecting plane: the block C , hangs over the water, and projects from the wharf, touching the edge of it, at the point 4 ; therefore meafure from 4 , to the furface of the water 5 ; then draw from S, (the vanifhing point of the four fides of the block) through 5 , and drop a perpendicular from its extreme angle, cutting S, 5 , in 6 , which is its feat on the furface of the water; and this meafure repeated downwards, finds the reflection of that angle, by means of which the reft is eafily determined. Or having firft found the reflection of the edge of the wharf, by repeating the perpendicular 4, 5, downwards, to 7 , draw a line from S, through 7 , and a perpendicular, from the corner of the block, cutting that line, will find the fame corner, or angle fought. The reflection C, is fimilar to its original, and all the rays run to S, as in the original.

The reffection of the block E , is found in the fame manner; the vanifhing point of E , is F , but the vanifhing point of its tranverfe fides is beyond the picture, to which the correfponding fides of the refection, or image, is drawn, as well as thofe of the block itfelf: the piece E, hangs over the piece C, but makes fo fmall an angle (with a
perpendicular from its interfection e,) that it becomes neceffary to ufe an expedient; therefore draw (from e) a line parallel to D, S, as e, f, and another from the edge, or corner, of the block, to g; draw F, f, g, and drop perpendiculars from f, and g; then meafure from f, downwards, to the furface of the water b, and repeat that meafure to i; draw F, i, cutting the perpendicular from g, in k, and transfer i, k, backwards, by parallel lines, perpendicularly under E , which will determine the reflection I, K, by which the reft is completed; (i. e.) dropping perpendiculars from e, and the corner of E, the parallels from i, and k, will meet them in I , and K , and the line K , I , will terminate in F, the vanifhing point of its original.

The reflection of G, is found on the fame principles. In order to find its feat, draw from its lower angle a line parallel to D, S, and a ray from ${ }_{I I}$, the angle of the wharf, to S, cutting that parallel in 8 ; drop a perpendicular from 8 , and cut it in 9 , by another ray from the furface of the water, under ir; drop a perpendicular from the lower angle of G, and draw 9,10 , parallel alfo to S, D, cutting that perpendicular in 10 , which will be the furface of the water; meafure therefore from the top of G, to 10 , and repeat that to 12 , which will be the reflexion fought.

Here is introduced a row of trees, to fhew in what manner they are to be reflected, and how many of them would be feen. Continue the ray, or line, on which they ftand, forwards to the margin, or edge, of the wharf; from thence take the diffance to the furface of the water, and repeat it downwards by a perpendicular; and, from the lower extremity of that perpendicular, draw a line to S, and then to that line drop a perpendicular from the firft tree; and from this laft point of interfection, meafure the tree downwards, and mark the top, and ftem, of that inverted tree; thence draw lines to S, which lines will receive perpendiculars from each tree above, whofe interfections will give the places of the reflected trees, refpectively.

And it appears that no more than parts of the three forwardeft trees will be vifible, in the water, by reflection.

Here, and every where, fuch objects, and fuch affemblage of ob: jects, only are reprefented, as feem beft calculated to exhibit examples for the inftruction intended, and not any regular figures, or agreeable pictures.
Fig. 74. No. r. The reflection, or image, of the figure A, fuppofed to ftand before a looking-glafs, is found on the fame principles as reflections in the water, with this difference, in the procefs, that the feat on the reflecting plane, and the image beyond, or within it, are both perSpectively found in this and every vertical fituation, except when the object, and its reflected image, are in a line parallel to the picture; whereas in the horizontal, (i. e.) in water, they are only, and always found geometrically ; therefore, having found the diftance from A, the foot of the figure, to a, the plane of the looking-glafs, on the vifual ray A, S, repeat the fame diffance, on the fame ray, onwards, that is, within the glafs, to a, which will determine the foot of the image; there raife a perpendicular, and draw another ray from the head of the figure to S, cutting that perpendicular, which interfection determines the height of the image; and in like manner any points of the original figure may be found, by drawing rays to S, from fuch points through correfponding perpendiculars.

And in the fame manner is found the image of the figure B, in the glafs, before it ; but this figure is again reflected in the glafs, behind it (which is over the chimney,) by geometrical meafures, taking firft the diftance to the plane of the glafs from B, to b, and agais the fame diftance to b, within the glafs; which is an operation fo fully explained in the preceding figures (reflected in water) as to need nothing more here: it will be obferved, that, in this latter cafe, the image is always equal to its original, whatever be the diftance; whereas, when perfpective meafures are neceffary, the images become lefs, in proportion to their diftance.

As thefe reprefentations are made purely for inftruction, it was necefiary to place the figures where the images could be reflected without grouping, or giving them any relation to each other; and for the fante reafon here are two of the glaffes inclining forwards, in order to

Shew the manner of finding refections, in fuch fituation; they both incline in an angle, of 18 degrees, with the fide of the room; as that oppofite to the figure F , whofe image is found by the fame general law, but the particular circumftances require explanation; and firft the vanifhing line of the plane of the glafs runs through E , below, which is the vanifhing point of the fides of it, and the bottom touches the wainfcot in the points c, and d. Wherefore, having drawn E, c, and E, d, and dropped a perpendicular from c, or d, to the floor, as here from c, to 5 , draw S , 5 , cutting E, c, in 6 , through which a parallel to $S, \mathrm{D},($ as $6, f$,) will be the bottom of the glafs on the floor (fuppofed beyond the wainfot). Now drawing F, S, cutting $6, f$, in f, and drawing E, f, this line will give the indefinite feat of the axis of the figure on the glafs, and G, being the vanithing point of perpendiculars to the plane of the glafs, draw F, G, cutting E, f, in g, which is the feat of the foot of the figure; wherefore double, or repeat F, g, within the glafs perfpectively (as has been frequently taught) to h, which will be the foot of the image, or reflection in the glafs, and alfo drawing from the head of the figure to G , cutting E, f, g, in 7 , that will be the feat of the head; this diftance from the head to 7 , being repeated perfpectively, finds the head of the image, which is now eafily completed, as the others.

The axis of the image might be found, by continuing the axis of the original figure, perpendicularly from F , upwards, till it meets the axis of the feat $\mathrm{E}, f, g, 7, \mathrm{in} \mathrm{H}$, and drawing H, I, which will be the axis of the image; for this point I , is the vanifhing point of the image, found, by making E, D, I, an angle of 18 degrees.

If the reader finds any difficulty to conceive this operation, or the reafon of it, he is referred to the fcheme below,
Fig. 74. No. 2. which is a geometrical reprefentation of it, with the fame charafters. $\mathrm{F}, 0, \mathrm{H}$, is the axis of the original figure; $f, g, 7, \mathrm{H}$, the feetion of the glafs with the fame inclination as in the picture; $g, 7$, is therefore the feat on the glafs, and $b, 0$, the image, which laft meets $\mathrm{F}, 0$, in H , as above. F, f, in the geometrical fcheme, is the floor ; f, b, the fame reflected (the angle of reflection being equal to that of incidence):
cidence) ; and hence appears the reafon of drawing D, I, to find the vanithing point of the image, for this line reprefents H, b, in the geometrical, as D, L, perpendicular to D, I, reprefents f, b, in the geometrical; H, h, f, being alfo a right angle, and therefore L, is the vaniming point of all the radials in the reflected foor. It may be worth while to examine the correfpondence of thefe lines in the geometrical fcheme, and the perfpective. The floor reflected in the glafs, is reprefented at 11,10 , above, which are the images of 11 , and 10, below, on the firf line of the floor, found by drawing lines from the originals to G, (the vanihing point of perpendiculars to the glafs, and cutting them by other lines from the interfection of the glafs with the floor; as from P , to L , the vanifhing point of the radials on the reflected floor, and (therefore) of perpendiculars to the image. Since therefore the reflected image of 11 , muft be in each of thefe lines, it muft be in their common interfection. Here are three fets, or pairs of lines, perpendicular to each other ; the firft pair are D, S, the common diftance, and geometrical perpendiculars to it , for the reprefentation of the room, \&xc. the fecond pair D, E, and D, G, for the reprefentation of the glafs, and the feats of objects on it; and the third pair D, I, and D, L, for the reprefentation of the image, or reflection, of the man, and of the floor, at right angles to the man.

The image of the object K , in the glafs M , is found by lines drawn from each point, geometrically perpendicular to the plane of the look-ing-glafs, (which is inclining in the fame angle from the wall, as the laft, viz. 18 degrees) ; thefe points, on the furface of the glafs, are feats of the originals, from each of which, an equal diftance is taken within, or beyond the furface, which laft fet of points being joined by right lines, become the image fought. The feveral feats on this glafs are found, by drawing lines, from each original point on the floor, parallel to the horizontal line, cutting the fection of the glafs on the floor, and thence drawing a parallel to the fide of the glafs, and drawing a perpendicular to that parallel from the original point. And for any original point above the floor, find its feat firft on the floor, and proceed as if that was the point, and then draw a perpendicular from the real
original point above, to the parallel on the glafs, as before directed. Or as at
Fig. 74. No. 3. Firff fuppofe the glafs to be clofe to the wall, (i.e.) to coincide with the line f, P, and confequently perpendicular to the floor, both before and behind.

Then (as the glafs inclines forwards) the floor, behind, rifes in proportion, (i.e.) to the pricked line $f, \mathrm{O},(18$ degrees $)$; yet ftill 90 degrees will be left, between that line, and the back of the glafs, from which there mult now be taken 18 more by the line f, g, to reduce the angle, behind, to 72 , equal to that before, which has loft 18 , by its inclination forwards.

And this is the reafon of the two angles of 18 , behind the glafs, between $f, \mathrm{~N}$, and f, g.

Draw A, B, and its parallels, (from the interfections of b, A, and its parallels) all parallel to f, g.

Transfer the feveral divifions of the line e, f, on f, g, and from thefe laft, draw to S, croffing all the parallels of A, B, which finifhes the reflection of the floor, in the glafs.

Every particular has been fo repeatedly explained, in relation to the former objects, that nothing need be here added. If any poffible difficulty arife, a careful infpection will remove it.-The reader muft obferve, that though the glafs receives but part of the image, yet the whole is defcribed by pricked lines, that the procefs may be entirely comprehended.
The feveral numerical figures of the image correfpond with thofe of the originals, refpectively.
N. B. $1,3,-2,4$, at the bottom, and top of the image, No. I. run to the fame vanifhing point S, as $\mathrm{I}, 3$, and $2,4, \& \mathrm{c}$. of the original, with which they correfpond; and $1,2,-3,4$, \&cc. are, alfo, parallel to each other, as in the original, being parallel to the picture.
The floor is chequered on purpofe, to give occafion for fhewing its image, or reflection in the two inclined glaffes; and in that marked, M, there is alfo the image of fo much of the window nearef to it,

The PRACTICE

as could be feen, by reflection, in it ; as alfo in the oppofite glafs over the chimney is the reflection of part of the neareft perpendicular glafs, and of the window, and, if the chimney glafs had been wider, the wery image of B, in the glafs before it, would have been again reflected in that of the chimney, where the pricked touches are made, that being the place in which the diftance from the image, to the fide of the room, is doubled, fuppofing that fide continued on, as far (backwards) as the image is caft.

Though very few defigners will, perhaps, take the pains to project, by rule, every reflected object; and though it feldom happens that very intricate difpofitions of fuch objects occur, yet it may not be ufelefs to add two or three cafes, in which the principles herein explained, and the methods founded on them, will appear peculiarly advantageous: thofe who are curious in fpeculation, and thofe who defire to be correct in the execution, will be gratified; and all will be better able to judge of what they fee, as well as the practitioners will be better able to perform, (even though it be by guefs) after knowing, and confidering the rules, than without fuch knowledge, and confideration. Fig. 75. No. I. P, Q, R, T, is fuppofed to be a looking-glafs ftanding, perpendicularly, on the horizontal plane; A, B, E, F, an object to be reflected, which is defignedly made plain, and fimple, to avoid confufion of lines; draw $A, a,-E, e,-B, b$, and F, f, all parallel to the horizon, (which lines will be perpendicular to the plane of the glafs,) and in thefe lines will be found both the feat of the object, on the glafs, and aifo its reflection, in it. m, S, is the vanifhing line of the glafs, and m, C, of the object to be reflected; but as C , (the vanihing point of A, B, and E, F,) is above the horizon, continue m, C, till it cuts the horizontal line in r, and draw E, r, cutting $\mathrm{P}, \mathrm{Q}, \mathrm{S}$, in n, which will be the point where the two planes, of the glafs and object, meet on the ground; and as their vanifhing lines meet, above, in m,-draw m, n, which will be their common interfection, and of which, m, is the vanifhing point.

Draw C, L, perpendicular to m, S, the vanifhing line of the glafs, cutting it in K , then K , will be the vanißing point of the feats of

A, B and E, F, on the plane of the glafs; for C, is their original vanifhing point, and K, is perpendicular to $i t$, on the vanifling line of the glafs; and m, n, being the interfection of thefe two planes, and $\mathrm{A}, \mathrm{B}, \mathrm{C}$, cutting that interfection in 0 , draw K, o, cutting A , a , in 1 , and B, b, in 2 , then $I, 2, K$, will be the feat of A, B, C; and as $\mathrm{E}, \mathrm{F}, \mathrm{C}$, alfo cuts the fame line m, n, in V , draw K, V, cutting E, e, in 3 , and F, f, in 4 ; then $3,4, K$, will be the feat of E, F, C, and drawing 1,3 , and 2,4 , the whole feat is completed; and doubling the four parallels $A, 1$, to $a ; B, 2$, to $b ; E, 3$, to e; and $F, 4$, to f; the image is completed, by joining a, b, e, f.

Or, fince the image or reflection is juft as far behind the feat, as the original is before it, in $\mathrm{C}, \mathrm{K}, \mathrm{L}$, make K, L, equal to C, K, and then L, will be the vanifhing point of the image; wherefore draw L, o, cuting A, a, in a , and B, b, in b , and draw alfo L, V, cutting E, e, in e , and F, f, in f , and joining a , e , and b, f, the image is completed; and by this method it may be found, even without the trouble of firft finding the feat.

Or, inftead of drawing four parallels, two will fuffice, A, a, and B, b; and having drawn L, o, cutting thofe two parallels in b , and a, and continued the fides of the original A, E, and B, F, till they cut the line m, n, in p, and q, draw q, a, and $p, \mathrm{~b}$, cutting $L, \mathrm{~V}$, in e, and f, this will complete the image alfo, without finding the feat. Fig. 75. No. 2. Proceed as was thewn at large in the former figure, which is the univerfal method recommended. The fame letters, and numerical figures, are ufed in this, as in that, to fhew the correfpondence. The only difference is, that, as this glafs does not fand perpendicularly on the horizontal plane, fo the parallels $A, a,-B, b$, $\& c$. are not parallel to the horizon, but are bere, as they muft be, always, perpendicular to the reflefting plane.
Fig. 75. No. 3. In this fcheme is the fame general method ufed, as in the two preceding; however, that nothing may be left unexplained, $i t$ is to be obferved, that the glafs here is oblique, not (as the laft) on the horizontal plane, but above it, whofe vanifhing line is $m, \mathrm{~K}, r$, and the vaniming point of the fides R, T, and P, Q, being K, the lines

The P RACTICE

perpendicular to this plane, are drawn perfpectively (and not geome. trically, as in the two former) ; that is, the vanifhing point W, of lines perpendicular to it, is found, by the rules heretofore taught, and $A, W,-B, W,-E, W$, and F, W, drawn, reprefenting perpendiculars, and confequently K, L, is made perfectively (not geometrically) equal to K, S : after which the image of the object is found by means of L, the vanifhing point of its fides; m, L, being its vanifhing line; and the feat (though not neceffary) is found (as before) to fhew the conformity of the lines, and of the procefs, with the preceding fchemes.
N. B. As the fame letters ftand for the fame points, it is needlefs to enter into the explanation over again, except that here, it became neceffary to vary two or three; as K , for inftance, at the Same time that it is the vanifhing point of the fides of the glafs, is alfo the vanifing point of the feats of A, B, and E, F, and that the vanifhing point of the fame original lines A, B, and E, F, which was marked C, in the former fchemes, is here marked S, becaufe it coincides with the center of the picture, which is always diftinguifhed by the fame letter, \&c. n, and V, alfo coincide in this fcheme; S, D, is the diftance of the picture; and the point L, is found by drawing $S, 5,6$, parallel to W, D, drawing D, K, cutting it in 5 , making 5,6 , equal to $S, 5$, and then drawing $D, 6$, cutting S, K, L, in L.
Fig. 75. No. 4. This laft fcheme is ftill by the fame method; but that no difficulty might be avoided, the center of the picture is not the vanifhing point of either the object, or glafs, both which are placed obliquely, the one above, the other below the horizontal line; and as E, is the only point of the object that touches the ground (E, C, and confequently E, being under it) E, r, is drawn to the interfection of its vanining line with the horizontal line, and alfo P, being the only point of the glafs that touches the ground, P, r^{2}, is drawn to the interfection of its vanifhing line with the horizontal line, and $\mathrm{E}, \mathrm{r}_{\mathrm{r}}$ cuting P, r^{2}, finds n, through which, from m, (the interfection of (wo vanifhing lines) viz. of the glafs, and object, is drawn m, n, the

1
interfection of their two planes. The reft is all as the former, only one letter (viz. Y,) is added here; for S, ferved in all the former cafes as the vanihing point, either of the glafs, or of the object, one of which coincided with the center of the picture, but Y, is '(in this fcheme) the vaniming point of R, T, and P, Q, and Y, S, W, is the vanifhing line of a plane perpendicular to Y, m, (the vaniming line of the glafs) on which $\mathrm{Y}, \mathrm{D}, \mathrm{W}$, is made a right angle to find W , the vanifhing point of perpendiculars.

The four laft fchemes, Fig. 75. No. 1, 2, 3, and 4, are defigned to explain, on the principles of Brook Taylor, the method of finding reflected objects in mirrors, and have a more particular reference to the laft fcheme in his book, where he reprefents the image of a picture as reflected in a glafs ftanding obliquely on a table. They are exhibited with all poffible fimplicity, and without any ornament, that fo no lines may enter into the diagrams, but fuch as are abfolutely neceffary to the projection of the image propofed.

This is one of the parts of that work, which is mentioned (in the Preface of this Treatife) as attended with difficulty. No. 3, is nearly Brook Taylor's own example, but with all the neceffary lines; No. I, and 2, are preparatory, and explanatory of the principles; and No. 4, a cafe fill more dificult, but all on the fame principles.

CONCLUSION.

THE author has, in this work, endeavoured to exprefs himfelf with all the perfpicuity that the nature of the fubject will ad. mit, and has been lefs folicitous to avoid repetition, than to avoid obicurity. That over fcrupulous exactnefs, which permits not to repeat an inftruction (once delivered) though at the diftance of many pages, makes references backwards continually neceffary, and not only perplexes and wearies the reader, but difgufts him more than, now and then, a feafonable repetition; and the getting by heart a great number of definitions, before their ufe can be known, efpecially when moft of them will afterwards appear to be unneceffary, is burthen-
fome to the memory, and tedious even to patience itfelf; yet every one of thefe muft be diftinctly remembered, or the reader muft be continually turning back to analyze them, which interrupts him beyond meafure. If, on the contrary, it were thought fufficient to call a fhadow, a fhadow, to call the ground, the ground, and to give the common names to common things, and to treat this fubject in a more familiar way, it might, undoubtedly, be thereby more accommodated to the apprehenfions of the generality of thofe, whofe profeffions require a knowledge of perfpective. And this is what the author has endeavoured to execute.

He is far from faying, or thinking (as the Jefuit in his Preface) "That perfpective is the very foul of painting, and which, alone, can " make the painter a mafter;" or as fome others, who may have fet it too high among the requifites, in forming a painter ; fince many very great mafters have been deficient in it, fome egregioufly, who have, notwithftanding, poffeffed the other, and more excellent parts in a high degree; as invention, compofition, expreflion, correctnefs of defign, and colouring; which will produce fine pictures, though the perfpective be, in fome refpects, faulty, and much finer, than any, in which the perfpective may be abfolutely true, and thefe other parts but in a low degree.

It is certain, however, that perfpective is an effential, and that whatever is erroneous in this refpect, does not truly reprefent the thing intended; that it is abfolutely neceffary to the perfection of painting; and that fome fubjects, particularly architecture, cannot be reprefented without it. It is alfo certain that a man will invent, and compofe with more facility, and precifion, who underftands it well, than he who underftands it but imperfectly, fuppofing other qualifications equal; that great errors in it are monftrous, and fhocking, and that a total ignorance of it is unpardonable in a painter, or defigner.

[^7]

THE

S U P P L E M E N T.

$$
\sim \quad+1
$$

SUPPLEMENT:

Added to illuftrate and explain fome of the more difficult parts of the foregoing Treatife, which, in their feveral places, were neceffarily complicated; but are here feparated, in order to their being fingly, and diftinctly confidered. For this purpofe it has been thought moft convenient to repeat the fame figures and numbers as in the body of the work, where the fame fubjects are treated (with the addition, only, of capital letters) that reference may eafily be had to fuch places.
AND FIRST,

THE reader is referred back, from this place, to Fig. 7r. No. ro where he will find, that the vanifhing point O , of the port 11, 12, is at a confiderable diftance below, among other objects, and (on that account) not fo readily diftinguifhed; and, alfo, that the vanifhing point of its fhadow is beyond the limits of the plate. For thefe reafons it has been thought proper to repeat this diagram by itfelf, and in a narrower compafs, that all the points may be feen at once, and fo their relation more diftinctly appear, efpecially as this is a matier of fome difficulty, and of great ufe.
Fig. 71. No. 1. A.-11, 12, is a line ftanding obliquely on the horizontal plane, whofe feat is 13,12 , and the vanifhing point of that feat is S.-U, is the given vanifhing point of the fun's rays. Firff find the vanifhing point of II, I2, by dropping a perpendicular from S, and continuing II, I2, till it cuts that perpendicular in O, which will be its vaniming point; then draw from O, through U, to the horizontal line, cutting it in X, which will be the vanifhing point of the shadow; then draw II, U, and $12, \mathrm{X}$, cutting it in 14; then 12, 14 , is the fhadow fought. For U, V^{\prime}, cutting the horizontal line (perpendicularly over U,) in V, this will be the vanifhing point of the fhadow
of any line ftanding perpendicularly on the ground. Now if fuch a perpendicular line 11 , 13 , be drawn, cutting the feat in 13 , the fhadow of that perpendicular will be 13, 14, and 14, will be (in that cafe, alfo, the fhadow of the point II; therefore 12,14 , muft be the fhadow of the whole line 11,12 , which is a proof, that the frif operation was true.
All the references are the fame as in the large fcheme, and there is no difference in any circumftance, except that this poft leans forwards in an angle of 58 , and the former in 65 ; which change was made, only to avoid the too great diftance of the vanilhing points O , and X .
So that if the text, relating to the former, be read with this fcheme, it will anfwer throughout.

And this will be general, for any line, viz. to draw from its vanifhing point, through the vanifhing point of the ray of light, to the vanifing line of the plane on which the fhadow is to be projected, whether it be the horizontal plane, or any other; and this interfection, with the vanifhing line of the plane on which the fhadow is caft, will be the vanifhing point of the fhadow. For, (in this fcheme,) imagine the plane D, S, O, raifed on S, O, till D, S, be perpendicular to the picture; then a line from D, to U, determines the vanifhing point of the rays; and, confequently, a line through O, and U, to the vanifhing line of the horizon, will give the vanifhing line of the plane of rays paffing over the whole line $0,12,11$, and therefore, alfo, the vanifhing point of the fladow 12,14.
Fig. 71. No. 1. E. Is an example of the fame kind on an oblique plane. Here C, q, is the vanifhing line of fuch plane; Q, P, a vanifhing line of planes perpendicular to it; a, B, a line fanding perpendicularly on the plane $C, q ;-B$, its feat, on that plane, and P, its vanifhing point; U , the given vanifhing point of the rays of the fun, and V , the vanifhing point of the fhadow, found as X , in the laft; that is, by drawing from P, the vanining point of the line a, B, through U, the vanifhing point of the rays, to the vanifing line of the plane on which the thadow is caft; draw a, U , and B, V, cutting it in c, then e, is the fhadow of a, and B, e, of B, a, on the plane C, q.

And if any other line, as a, b, be given, on the fame plane C, q, ftanding obliquely on it (yet being parallel to the plane Q, P,) continue that line a, b, to its vanifhing point Q , and draw Q, U, cutting C, q, in q, then q, will be the vanifhing point of its fhadow on the plane C, q. Wherefore,

Draw b, q, cutting the ray a, U, in e, and b, e, will be its fhadow.
If a, B, were continued to g, then g, b, would be the fhadow of a, g.

And if a, b, were continued to f, (or any length) the fame operation finds the fhadow; thus f, b, is the fhadow of $a, f, \& c c$.
Fig. 7r. No. 1. F. Here is one more example for the fhadows of oblique lines. Thefe incline inwards, and therefore have their vanifhing points above the horizontal line.
O, H, the horizontal line; Y , the vanifhing point of the four lines A, $B ;-U$, the vanifhing point of the rays of light, and confequently U, Y, is the vanifhing line of the rays which pafs over thefe four lines; and W , (being the point, in that vanifhing line, which cuts the horizontal line) is the vanifhing point of their fhadows on the horizontal plane, (i. e.) on the ground. The line A, L, being in a different direction, has another vanifhing point, viz. y, and therefore the rays paffing over it will produce another vanifhing line, as U, y, which cutting the horizontal line in w, that becomes the vanifhing point of the fhadow on the ground of this line A, L.

The reft needs no explanation, only as H , is the perpendicular feat of Y , on the horizontal line, and b, of y; if the perpendicular feats of A, are found, then, by means of thefe feats, the fame fhadows might be determined, as in the cafe of perpendicular lines; for the fhadows of the point A, would exactly coincide with thefe, here, found, and then the point 0 , perpendicular to U, muft be ufed as the vanifhing point of thefe fhadows on the ground.

The feat of any of the points A, is found by drawing a line from B, to H, then dropping a perpendicular from A, to the line B, H, which line is the feat of the line A, B, on the ground, as at, A, I, and at $\mathrm{A}, 2$, the feat is a; and then drawing $a, 0$; and A, U, interR
fecting
fecting it in a, this point is the fhadow of A , which coincides with that already found, and is a proof, that the method, propofed, is univerfally true.
$N . B$. The center and diftance are not given, being no way concerned in this diagram, for wherever the center is placed, in the horizontal line, or whatever be the diftance, all the feveral relations of thefe lines remain the fame.
It is alfo evident, that two lines, only, are neceffary to the determining any fhadow, as appears at $\mathrm{A}, \mathrm{B}, 4$, viz. one from the top A , to the vanifhing point of the rays U, and another from the bottom B, to the vanifhing point of the fhadow W ; the additional lines at I , and 2, are merely for illuftration, or proof; and at 3 , there is another line A, L, whofe vanifhing point is y, and the vanifhing point of its fhadow w.

The foregoing fchemes have been introduced, and explained, in order to facilitate the practice, in the perfpective of fhadows, and principally with refpect to the members of architecture; for though, hitherto, in fimple lines, only, (that they may be more eafily comprehended,) yet their application, and utility will appear by thofe which follow.
Fig. 69. No. 8. (in the foregoing treatife) is the reprefentation of a Doric cornice; now to find the fhadows of the projecting members, draw from S, (the center of the picture) a line to the extremity of any member, (e.g.) to f, the extreme angle of the modillion; which line will be (perfpectively) perpendicular to the plane of the picture, and find the point g, in which fuch member touches the naked, or folid, of the building, (i.e.) the plane on which the fhadow is to be caft; and from that point g, draw a line g, b, parallel to $S, R,(\mathrm{R}$, being the given vanifhing point of the rays of light); then draw f, R, cutting g, b, in b, which will be the fhadow of f; and fo of the reft.
Fig. 69 . No. I. A. But to explain this operation, unembarraffed with other lines, is the following fcheme. Here S, is the center of the picture ; S, D, the diftance; R, the vanifhing point of the rays of the fun: f, g, a line perpendicular to the picture ${ }_{2}$ and alfo to the plane

on which the chadow is to be caft, which plane is parallel to the picture. Now, g, being the feat of f, g, on the parallel plane, or the point in which it touches that plane, draw g, b, parallel to S, R, and draw f, R, cutting it in b; then g, b, will be the fhadow of g, f.

For as all lines tending to S, reprefent lines parallel to D, S, when raifed up on S, (i. e.) perpendicular to the picture; fo all lines tending to R, reprefent lines parallel to D, R; therefore S, is the vanihing point of all the lines f, g, and R , of all the rays paffing over them, which rays (though parallel among themfelves) being oblique to the picture, muft have a common vanifhing point. And as the plane, on which there fhadows are caft, is parallel to the picture ; and the objects, whofe fhadows are fought, all perpendicular to that plane; the fhadows muff neceffarily be all parallel to each other, and to the feat of the rays on that plane, which is S, R, and therefore can have no vanifhing point; and for the fame reafons, all perpendicular objects, that are of equal length, will project fhadows, on this parallel plane, of equal length alfo.
Fig. 6 . No. I. E. As for the fide plane of the fame object, which plane is perpendicular to the picture, the fhadows will have a vanifhing point, as Z, perpendicularly under S, for S, Z, is the vanifhing line of that plane, and R, Z, drawn from R, perpendicular to S, Z, will be parallel to the lines, whofe fhadows are fought, on this plane, which lines are all parallel to the picture. Thus, draw a line from i, (the point where l, i, touches the fide or profile of the building) to Z, and then draw another line, l, R, cutting it, in m, which will be the point fought, that is, the fhadow of l, on the folid of the building, exactly as on the horizontal plane in finding the fhadow of a line ftanding perpendicularly on it; for (turning the picture) the whole correfponds to that; and having found m, the fhadow of any fuch point l, draw S , m, which will determine the whole fhadow of fuch projecting member; for S, m, reprefents a line parallel to i, i, and l, b.

To find the fladows on a plane oblique to the picture, fuch as at Fig. 69. No. 4. (in the foregoing treatife) a line muft be drawn (perfpectively) perpendicular to that plane, (i.e. as the modillions are, on this face of the building,) and then the operation will be like the laft; but as there, fpace is wanting to introduce the vanifhing points of the rays, and of the fhadow, fee
Fig. 69. No. 4. G.-Draw b, A, to its vanifhing point g, and from g, draw through R, the given vanifhing point of the rays, to S, e, (the vanifhing line of this face of the building,) cutting it in e, which will be the vanihhing point of the fhadow. Now draw b, R, and A, e, cutting it in f_{2} then A, f, is the fhadow of A, b, on this plane. Thefe are all the lines that are neceffary for the purpofe; and this is the fhorteft method.

But the fladow f, of the point, b, might be found by other lines, which are here added merely for illuftration, and to fhew a kind of correfpondence.
For, in every method, the truth of the operation depends upon the fimilarity of triangles, either geometrically, or perfpectively, and in this already explained, the triangles $b, \mathrm{~A}, f$, and R, e, f, are perfpectively fimilar, that is, reprefent fimilar triangles; for g, b, and g, e, reprefent parallel lines, as having the fame common vanifhing point g.

And if R, L, be drawn parallel to S , g, (the horizontal line) cutting the fame vaniming line S, e, in L, and b, a, be drawn parallel to it, then draw a, L, which cutting b, R, finds the fame point f, for the thadow of b, and here the triangles $\mathrm{b}, \mathrm{a}, f$, and $\mathrm{R}, \mathrm{L}, f$, are, geometrically, fimilar.

Again, if a perpendicular from R , be drawn cutting S, g, in r, draw r, b, cutting S, A, in a, and draw a, f, parallel to r, R, this alfo will cut the ray b, R, in the fame point f, and here the triangles b, a, f, and b, r, R, are fimilar.

And having found f, the fhadow of b, draw S, f, which will determine the whole fhadow of the projecting member; as in the laft example. For S, f, reprefents a line parallel to S, A, and S, b. Fig. 72. No. 1. A. This fcheme is introduced to explain fome particulars relating to the fhadow of the ladder at Fig. 72. No. 1. and therefore

fore has the fame letters, and numerical figures of reference; only inftead of that object, here is a plank, in order to fhew the operation and effect more diftinctly.
$\mathrm{G}, \Theta, 4$, is a ray parallel to the plank, and the triangle $G, 4, S$, is a plane of rays continued to the horizon.-A, 7 , is the interfection of that plane, by the plane of the wall againft which the plank leans: therefore from the point A, (the top of that interfection) drawing A, 5, and $A, 6$, through the top of the plank, thefe lines will give the fhadow of it on the wall, but being interrupted by the door, at 13, 14, the fhadow will thence take another direction. Now fince the plane of the door (whofe vanifhing point is a, cuts the triangular plane of rays in $\mathrm{B}, 8$, (as the plane of the wall does in $\mathrm{A}, 7$,) therefore from the point B, draw through 13,14 , which will give the direction of the fhadow on the door, which fhadow will meet that on the ground (from the bottom of the plank) in 11, 12. The triangle B, 11, 12, correfponding to the plane of the door, exactly as the triangle $\mathrm{A}, 5,6$, does to the plane of the wall, and as the triangle $4, F, G$, does to that of the utmoft diftance, which, being parallel to the picture, and to the wall, the line $4, G$, is parallel to $A, 6$, and $4, F$, to $A, 5$, which fhews the correfpondence of the operation, and proves the truth of it.

And as a, is the vanifhing point of the top, and bottom of the door, fo a, g, f, will be the vanifhing line of its plane; wherefore, continuing 1I, B, to g, and $12, \mathrm{~B}$, to f, thefe will be the vanifting points of thofe lines;-and as a, g, f, is at the utmoft extent; or on the horizontal line, as well as $F, 4$, and $G, 4$, fo, by continuing $F, 4$, to f, and $G, 4$, to g, thefe fame points f, and g, will alfo be the interfections of the vanifhing lines $F, 4$, and $G, 4$, with the vanifhing line $a_{3} g, f_{0}$ which is a farther illuftration of the whole.
N. B. It feems hardly neceffary to add, that G , (being the point in which the fame ray $4, \Theta, G$, touches the ground) anfiwers the fame purpofe for the plane of the ground, as A; and B, for the planes of the wall, and the door, and that the triangle $\mathrm{G}, 11,12$, on the ground (therefore) correfponds to that plane, as $A, 13,14$, and $B_{2} 11,12$, to their refpective planes.

As a farther illuftration of the two laft fchemes, and to render this kind of operation (which is of great ufe) ftill more clear, here is added a third.
Fig. 72. No. 1. B. Let L, 4, be confidered as one leg of the ladder, or a pole, continued to its vanifhing point $4 ;-L, S$, the feat of the pole, on the ground, continued to its vanifhing point S; fo that L, $4, S$, may be confidered as a triangular plane, whofe vanifhing line is $S, 4$. Draw from 4, through Θ, the light, and from S, through F, the foot of that light, meeting in G, which will be the foot of the light, for the pole, becaufe 4, G, reprefents a parallel to 4, L.

Draw G, L, cutting a, II, (which is the interfection of the plane of the door with the ground) in b, and from 8, (the interfection of L, S, with a, II,) raife a perpendicular, cutting $\mathrm{L}, 4$, in d; draw b, d, which will be the fhadow of L, d, on the plane of the door ; continue b, d, till it meets a, f, (the vanifhing line of the plane of the door) in f, which will be the vanifhing point of b, d.

Or that vanifhing point may be found, by continuing $\mathrm{G}, \mathrm{L}, b$, to F, in the horizontal line, and drawing $F, 4$, which will find the fame point f, and then drawing b, f, which will cut L , 4, in d.

And this laft method will be true for any plane, whofe vanifhing line is a, f.-For fuppofe a plane whofe interfection with the ground is $a, 7$, and which is cut by L, S, in b; raife, at b, a perpendicular up to L, 4 , cutting it in k, and draw $7, k$, which will tend to the fame point f; or draw $7, f$, which will cut $\mathrm{L}, 4$, in k, and $7, k$, will be the fhadow of L, k, on that plane.

And fo univerfally of any plane, whofe vanifhing line is a, f, from $a, 1 I$, to a, F.

Again, fuppofe a line drawn through L, parallel to the horizontal line a, F, cutting $4, \Theta, \mathrm{G}$, in g, and a, II, in II, and S, g, cutting Θ, F, in f, then f, will be the foot of the light (removed farther within the plane of the ground) ; and drawing $4, \mathrm{U}$, parallel to $g, \mathrm{~L}, 1 \mathrm{I}$, cutting the vanifhing line a, f, in U , then U , will be the vanifhing point of the fhadow of $\mathrm{L}, 4$, (or of L, d,) on the plane of the door; and drawing II, U , cutting $\mathrm{L}, 4$, in $d,-\mathrm{II}, d$, will be that fhadow;

remembering, that in this laft cafe, the foot of the light is fuppofed to be f , (farther removed within the picture) which occafions the fhadow from g, to be fo much longer, than that from G, produced by the foot F, which is nearer; and that, in either cafe, Θ, (the light) is juft as far within the picture, or the ground, as its foot, whether it be F, or f . Fig. 72. No. 3. Here the rays of light, are thofe of the fun, fuppofed to be parallel to the picture, and to H, I; it is required to find the fhadow of the fquare projection a, b, c, of this building on the parts contiguous to it.

Firft, draw c, q, parallel to K, I, the horizontal line, this gives that part of the fhadow which is caft on the ground; at q, raife a perpendicular to r, the edge of the roof; then draw r, n, parallel to K, L, the vanifhing line of the plane of the roof, and draw b, n, parallel to H, I, cutting r, n, in n, which is the fhadow of b; fo that c, q, r, n, is the whole fhadow of the line c, b, and is, evidently, in a plane of rays parallel to the picture, and to H, I.

For c, q, is on the horizontal plane, and parallel to the horizontal line, and q, r, is parallel to c, b, and in the fame plane with that, and c, q; and r, n, (joining q, r,) is on the roof, and parallel to its vanifhing line L, K; therefore, \&c.

Now, in order to find the fladow of b, a, whofe vanifhing point is I , let it be confidered that I, H, is the vanifhing line of the plane of rays which pafs over b, a, and L, K, is the vanifhing line of the roof, and, therefore, that the interfection of thefe two vanifhing lines E, muft be the vanifhing point of the fhadow of b, a, on the roof, for the Joadow itfelf is ithe interfection of thofe two planes. Therefore draw E, n, which will be the indefinite fhadow of b, a, on the roof, and drawing $a, 0$, parallel to H, I, cutting E, n, in 0 , this would determine o, n, the fhadow of a, b, (for a, would be the fhadow of a, on the roof) if the roof were continued fo high; but as this is interrupted by the perpendicular plane $l, 0$, whofe vanifhing line is K, H, which interfecting I, H, (the vanifhing line of the rays) in H , this interfection will be the vanifhing point of the fhadow on that plane, for this faclow is the interfection of the says with that plane. There-

128
 The SUPPLEMENT.

fore draw H, a, cutting $n, 0$, in p, and then a, p, is that part of the fhadow of a, b, which falls on the wall, and p, n, the reft of it, which falls on the roof; fo that a, p, n, is the whole fhadow of a, b, produced by rays all parallel to the picture, and to H , I.

And to prove the truth of all this, draw from c, the feat of b, on the ground, and from e, the feat of a, two lines, c, g, and e, f, parallel to the horizontal line; then draw b, g, and a, f, both parallel to H, I, cutting them in g, and f; then g, will be the fhadow of b, and f, the fhadow of a, on the ground. And, having continued I, e, c, and L, b, till they meet in i, draw K, i, and I, f, g, meeting in X ; draw X, L; now raife perpendiculars from g, and f, cutting X, L, in l, and k; draw k, b, and l, m, which will be perpendicularly over f, e, and g, c, and parallel to cach other, and to the vanifhing line L, K, and therefore will be the fhadows of a, b, and b, m, on the roof; which lines meeting with the rays b, g, and a, f, in n, and 0 , thefe rays determine the lengths of the fhadows; that is, n, is the fhadow of b, and 0 , would be the fhadow of a, if the roof reached fo high; in which cafe, $0, n$, would be the fhadow of a, b; but as the roof is interrupted by the perpendicular plane above, (which touches the line b, p, in p, therefore a, p, will be fo much of the fhadow of a, b, as falls on that plane, and the reft of it is p, n, on the roof.
Fig. 72. No. 4. Is a cylinder, lying on the ground, whofe bafe is parallel to the picture.
S, is the center of the picture ; R, the vanifhing point of the rays of light, which are fuppofed to come from the fun; L , the vanihing point of the fhadow, found by raifing a perpendicular from R, up to the horizontal line; it is required to find the fhadow of any point, or points, of the circumference of the bafe of the cylinder, on the inner furface of it.

The fhadow of A, is found on the inner furface, by drawing A, a, parallel to S, R, and drawing a, S, and, laftly, A, R, cutting a, S, in a.

For the fhadow of A, muft be determined by the ray, paffing over that point, to the vanihing point R, and it muft be in the line a, S,

in which that ray cuts the inner furface, and alfo it muft be in the point (of a, S,) in which A, R, cuts that line: therefore it muft be the point a.

And fo for any other point, or points of the circumference: by which operation a number of points in the inner furface may be found fufficient to trace the fladow of the circumference, within the hollow of the cylinder.
The fhadow within the other cylinder is found in the fame manner ; but that is introduced, principally, to fhew the method of finding the fhadow caft on the outer furface, by any object, as B, interpofed between it, and the light. In order to which; firt find the fhadow of that object on the ground, then mark any point on the bafe of the cylinder, as b, and find its feat c, on the ground: draw c, S, cutting the fhadow of B ; in d; at d, raife a perpendicular, and draw b, S, cutting that perpendicular in e, which will be the point of fhadow fought. And repeating the fame operation for as many points as fhall be neceffary, the whole fhadow of the object B, may be found on the outer furface.

For, $\mathrm{b}, \mathrm{c}, d, e$, may be confidered as a perpendicular plane touching the cylinder in the line b, e; and d, e, would be the fhadow of B , on fuch plane; but, as the cylinder is circular, the plane of the fhadow touches it only in the point e, which is the reafon that other points muft be found, by the fame method; that is, by marking feveral points on the bafe of the cylinder, finding their feats on the ground, then drawing lines from thofe feats to S, cutting the fhadow of B, on the ground, and thence raifing perpendiculars; and laftly, drawing lines from the feveral points (marked on the bafe) to S, meeting their refpective perpendiculars in the points of fhadow.

The End of the Supplement.

DIRECTIONS to the BOOKBINDER.

The two unnumbered Plates to be placed in the Introduction as paged, to wit, x and xii, and thofe numbered as follow.

Plate I. - - . to front page 4

$$
\text { II. - - } 8
$$

$$
\text { III. - - }-\quad-\quad \text {. } 10
$$

$$
\text { IV. }-\cdots \cdots 12
$$

$$
\text { VI. - - . . - } 16
$$

$$
\text { VII. - - - - - } 16
$$

$$
\text { VIII. - - - - } 16
$$

$$
\text { IX. }-\ldots 18
$$

$$
\text { X. } 20
$$

$$
\underset{X I}{X I} \quad-\cdots-\quad-\quad 22
$$

$$
\text { XII. } 24
$$

$$
\text { XIII. - - - - } 28
$$

$$
\text { XIV } \ldots \ldots{ }^{2}
$$

$$
X V \ldots . \cdots 36
$$

$$
\text { XVI. - . . - } \quad 38
$$

$$
\mathrm{XVII}_{\circ} \ldots \ldots-\cdots 36
$$

$$
\text { XVIII - - - - } 50
$$

$$
\text { XIX - - - - } 42
$$

$$
X X
$$

$$
\underset{\sim}{\mathrm{XXI}} \mathrm{M} \cdots \cdots 5^{2}
$$

$$
\text { XXII. - - - - } 54
$$

$$
\text { XXIII - - - - } 5^{8}
$$

$$
\text { XXIV } \ldots \ldots .{ }^{2}
$$

Plate XXV. - - to front page 72
XXVI. - - - - 64
XXVII. - - - - 66
XXVIII. - - - - 70
XXIX. - - - - 72
XXX. - - - - - 74.

XXXI - - - - 7^{6}
XXXII. - - - - 78
XXXIII. - - - - 80
XXXIV. - - . - 82
XXXV. - - - - - 84
XXXVI. - - - - 86
XXXVII. - - - - 88
XXXVIII. - - - - 90
XXXIX. - - - - 94
XL. - - - - - 100
XLI. - - - - - 108
XLII. - - - - 112
XLIII. - - - - 114
XLIV. - - - - - 116
XLV. - - - - - 122
XLVI. - - - - 124
XLVII. - - - - 126
XLVIII. - - after page 129

$$
2584.593
$$

[^0]: * Since the above was written, there has been another edition of Dr. Brook Taylor, publifhed in 17.49 , faid to be reviled, and corrected by Mr. Colfon, of Cambridge.

[^1]: * The term geonetrical here, and clfewhere, (when without a fubftantive) is ufed fubftantively for the original object, as the term perfpective is frequently ufed for the reprefentation.

[^2]: * His words are,-laquelle maniere s’eft treuvée, fans contredit, la plus familiere, et abregée, jufte, \& precife qu'aucune qui ait encore parue, et j'ofe bien dire qui pareftra. Avertifement.

 His book is intitled, "Moyen univerfel de Pratiquer la Perfpective fur les Tableaux ou "Surfaces irregulieres, \&c. A Paris, MDCLIII. Par A. Boffe."

 And again Chap. I. J'ay dit que j 'avois mis en lumiere un traité de perfpective que je crois, avec plufieurs, etre le meilleur qui fe foit fait, et, fe fera, \&c.

[^3]: * To do juftice, however, to the author, it is acknowledged that this fcale is, in forne eafes, a very ufeful expedient; though it will by no means jufify what he fays of his general method.

[^4]: * His words are, - defcendendo cum lineis occultis, ad perpendiculum, ab fingulis projecturis limborum defcribuntur totidem circuli in veftigio, ut unufquifque aptè collocetur, atque $a b$ atrifque fierunt bales opticè adumbratx: pro quibus certum oculi punctum fatuere non potui, ì quod borizontales non fint. Sed tranfuli, sirsino, fingillatim, puncta, ut finem, as finuationem cujufque linea invenirem, \&c.

[^5]: * N. B. This bifection is made to find the vanifing point p, from which a line (drawn to s) will divide 4, 2 , in half, and fo become the diameter of the lower pentagon; for ε, is the vanilhing point of 4,1 , which is parallel to 2,10 ; and f, of 2 , 1 , which is parallel to 4, 5 . The fame point p, might alfo have been found, by drawing d, p, perpendicular to d, c, for c is the vanifling point of the line 4,2 . Or as p, is in the plane of the vanifhing line c, c, and alfo in that of b, p, it muft be in their interfection, and therefore is found, as here, in the interfection of thefe two vanifing lines.

[^6]: * N. B. The line here directed to be drawn, is fo nearly parallel to h, p, that the point of interfection falls at too great a diftance to be conveniently ufed; yet being the fame method by which the laft point in, (of the fame diameter) was found, it was proper to direct it, as beft, when the points fall within reach.

 But an expedient may be ufed to find r, the other extremity of this upper diameter. From i, (in the line h, p,) draw one line through the center of that diameter, indefinitely, and another through 11 , (the extremity already found) ; and, at any convenient diftance, draw a line through them both, parallel to h, p, as L, w, I, x, cutting thefe lines in I, and w : now as i, 1 , neceffarily paffes through the center of the lower pentagon, and $i, 1$, through one extremity of its diameter; draw alfo i, l, through the other extremity, cutting the fame line $\mathrm{L}, w, \mathrm{I}, x$, in L ; by this means the proportion of the two parts of the diameter is found geometrically: therefore, in the line $\mathrm{L}, w, \mathrm{I}, x$, make I, x, equal to L, w, and draw i, x, which will cut the upper dia. meter in the point r.-This is thus particularly explained for its general ufe.

[^7]: The E N D.

